Filters
total: 1352
filtered: 1269
displaying 1000 best results Help
Search results for: IDENTIFICATION OF NONSTATIONARY PROCESSES, SELECTION OF ESTIMATION BANDWIDTH, PARAMETRIC SPECTRUM ESTIMATION
-
Identification of nonstationary multivariate autoregressive processes– Comparison of competitive and collaborative strategies for joint selection of estimation bandwidth and model order
PublicationThe problem of identification of multivariate autoregressive processes (systems or signals) with unknown and possibly time-varying model order and time-varying rate of parameter variation is considered and solved using parallel estimation approach. Under this approach, several local estimation algorithms, with different order and bandwidth settings, are run simultaneously and compared based on their predictive performance. First,...
-
On joint order and bandwidth selection for identification of nonstationary autoregressive processes
PublicationWhen identifying a nonstationary autoregressive process, e.g. for the purpose of signal prediction or parametric spectrum estimation, two important decisions must be taken. First, one should choose the appropriate order of the autoregressive model, i.e., the number of autoregressive coefficients that will be estimated. Second, if identification is carried out using the local estimation technique, such as the localized version of...
-
Two-Stage Identification of Locally Stationary Autoregressive Processes and its Application to the Parametric Spectrum Estimation
PublicationThe problem of identification of a nonstationary autoregressive process with unknown, and possibly time-varying, rate of parameter changes, is considered and solved using the parallel estimation approach. The proposed two-stage estimation scheme, which combines the local estimation approach with the basis function one, offers both quantitative and qualitative improvements compared with the currently used single-stage methods.
-
On adaptive selection of estimation bandwidth for analysis of locally stationary multivariate processes
PublicationWhen estimating the correlation/spectral structure of a locally stationary process, one should choose the so-called estimation bandwidth, related to the effective width of the local analysis window. The choice should comply with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive estimation variance. The paper presents a novel method...
-
Lattice filter based autoregressive spectrum estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running forward in...
-
On adaptive covariance and spectrum estimation of locally stationary multivariate processes
PublicationWhen estimating the correlation/spectral structure of a locally stationary process, one has to make two important decisions. First, one should choose the so-called estimation bandwidth, inversely proportional to the effective width of the local analysis window, in the way that complies with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive...
-
On Adaptive Spectrum Estimation of Multivariate Autoregressive Locally Stationary Processes
PublicationAutoregressive modeling is a widespread parametricspectrum estimation method. It is well known that, in the caseof stationary processes with unknown order, its accuracy canbe improved by averaging models of different complexity usingsuitably chosen weights. The paper proposes an extension of thistechnique to the case of multivariate locally stationary processes.The proposed solution is based on local autoregressive...
-
On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes
PublicationThe problem of identification of nonstationary multivariate autoregressive processes using noncausal local estimation schemes is considered and a new approach to joint selection of the model order and the estimation bandwidth is proposed. The new selection rule, based on evaluation of pseudoprediction errors, is compared with the previously proposed one, based on the modified Akaike’s final prediction error criterion.
-
New results on estimation bandwidth adaptation
PublicationThe problem of identification of a nonstationary autoregressive signal using non-causal estimation schemes is considered. Noncausal estimators can be used in applications that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing one to adjust tracking characteristics of noncausal estimators to unknown...
-
Lattice filter based multivariate autoregressive spectral estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a multivariate nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running...
-
Regularized Local Basis Function Approach to Identification of Nonstationary Processes
PublicationThe problem of identification of nonstationary stochastic processes (systems or signals) is considered and a new class of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike the classical basis function estimation schemes, the proposed regularized local basis function estimators are not used to obtain interval approximations of the parameter trajectory, but provide...
-
Identification of nonstationary processes using noncausal bidirectional lattice filtering
PublicationThe problem of off-line identification of a nonstationary autoregressive process with a time-varying order and a time-varying degree of nonstationarity is considered and solved using the parallel estimation approach. The proposed parallel estimation scheme is made up of several bidirectional (noncausal) exponentially weighted lattice algorithms with different estimation memory and order settings. It is shown that optimization of...
-
On autoregressive spectrum estimation using the model averaging technique
PublicationThe problem of estimating spectral density of a nonstationary process satisfying local stationarity conditions is considered. The proposed solution is a two step procedure based on local autoregressive (AR) modeling. In the first step Bayesian-like averaging of AR models, differing in order, is performed. The main contribution of the paper is development of a new final-prediction-error-like statistic, which can be used to select...
-
Study of probe signal bandwidth influence on estimation of coherence bandwidth for underwater acoustic communication channel
PublicationA signal transmitted in a shallow Underwater Acoustic Communication (UAC) channel suffers from time dispersion due to the multipath propagation and the refraction phenomena. This causes intersymbol interference of the received signal and frequency-selective fading observed in its spectrum. Coherence bandwidth is one of the key transmission parameters used for designing the physical layer of a data transmission system to minimise...
-
Analiza właściwości rozszerzonego obserwatora prędkości maszyny indukcyjnej
PublicationRozszerzony obserwator prędkości został zaproponowany przez prof. Krzemińskiego i jest oparty na rozszerzonym modelu maszyny indukcyjnej, gdzie wprowadzona został nowa zmienna ζ. Jest to nowe podejście do estymacji zmiennych stanu maszyny indukcyjnej i nie wszystkie problemy zostały do tej pory rozwiązane. Zaproponowano wykorzystanie algorytmów ewolucyjnych do doboru wzmocnień obserwatora. W celu redukcji nakładów obliczeniowych...
-
On noncausal identification of nonstationary stochastic systems
PublicationIn this paper we consider the problem of noncausal identification of nonstationary,linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts its smoothing...
-
Generalized Savitzky–Golay filters for identification of nonstationary systems
PublicationThe problem of identification of nonstationary systems using noncausal estimation schemes is consid-ered and a new class of identification algorithms, combining the basis functions approach with localestimationtechnique,isdescribed.Unliketheclassicalbasisfunctionestimationschemes,theproposedlocal basis function estimators are not used to obtain interval approximations of the parametertrajectory, but provide a sequence of point...
-
Estimation of Coherence Bandwidth for Underwater Acoustic Communication Channel
PublicationA shallow underwater acoustic communication channel is characterized by strong multipath propagation. The signal reaching the receiver consists of a direct waveform and a number of its delayed and suppressed replica. A significant time dispersion of the transmitted signal and selective fading of its spectrum are observed. Coherence bandwidth defines maximal bandwidth, wherein the channel amplitude characteristic remains constant...
-
Improving the accuracy of bearing in active sonar with cylindrical array using spectrum estimation.
PublicationThe articles presents a method for improving the accuracy of bearing in multibeam sonar with a cylindrical array. Based on a known spatial spectrum estimation technique, the method has been successfully used in linear array systems. Its accuracy of bearing is satisfactory and ensures a relatively low computational effort. The article discusses certain simplifications and assumptions to adapt the spatial spectrum estimation technique...
-
On noncausal weighted least squares identification of nonstationary stochastic systems
PublicationIn this paper, we consider the problem of noncausal identification of nonstationary, linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted (windowed) least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts...
-
Identification of Unstable Reference Points and Estimation of Displacements Using Squared Msplit Estimation
PublicationThe article presents a new version of the method for estimating parameters in a split functional model, which enables the determination of displacements of geodetic network points with constrained datum. The main aim of the study is to present theoretical foundations of Msplit CD estimation and its basic properties and possible applications. Particular attention was paid to the efficacy of the method in the context of geodetic...
-
On the preestimation technique and its application to identification of nonstationary systems
PublicationThe problem of noncausal identification of a nonstationary stochastic FIR (finite impulse response) sys- tem is reformulated, and solved, as a problem of smoothing of preestimated parameter trajectories. Three approaches to preestimation are critically analyzed and compared. It is shown that optimization of the smoothing operation can be performed adaptively using the parallel estimation technique. The new approach is computationally...
-
Asynchronous Networked Estimation System for Continuous Time Stochastic Processes
PublicationIn this paper we examine an asynchronous networked estimation system for state estimation of continuous time stochastic processes. Such a system is comprised of several estimation nodes connected using a possibly incomplete communication graph. Each of the nodes uses a Kalman filter algorithm and data from a local sensor to compute local state estimates of the process under observation. It also performs data fusion of local estimates...
-
Local basis function method for identification of nonstationary systems
PublicationThis thesis is focused on the basis function method for the identification of nonstationary processes. The first chapter describes a group of models that can be identified using the basis function method. The next chapter describes the basic version of the basis function method, including its algebraic and statistical properties. The following section introduces the local basis function (LBF) method: its properties are described...
-
Detection and Direction-of-Arrival Estimation of Weak Spread Spectrum Signals Received with Antenna Array
PublicationThis paper presents a method for the joint detection and direction of arrival (DOA) estimation of low probability of detection (LPD) signals. The proposed approach is based on using the antenna array to receive spread-spectrum signals hidden below the noise floor. Array processing exploits the spatial correlation between phase-delayed copies of the signal and allows us to evaluate the parameter used to make the decision about the...
-
Towards Robust Identification of Nonstationary Systems
PublicationThe article proposes a fast, two-stage method for the identification of nonstationary systems. The method uses iterative reweighting to robustify the identification process against the outliers in the measurement noise and against the numerical errors that may occur at the first stage of identification. We also propose an adaptive algorithm to optimize the values of the hyperparameters that are crucial for this new method.
-
Asynchronous distributed state estimation for continuous-time stochastic processes
PublicationWe consider the problem of state estimation of a continuous-time stochastic process using an asynchronous distributed multi-sensor estimation system (ADES). In an ADES the state of a process of interest is estimated by a group of local estimators. Each local estimator based, for example, on a Kalman filter, performs single sensor filtration but also fusion of its local results and results from other (remote) processors to compute...
-
Locally Adaptive Cooperative Kalman Smoothing and Its Application to Identification of Nonstationary Stochastic Systems
PublicationOne of the central problems of the stochastic approximation theory is the proper adjustment of the smoothing algorithm to the unknown, and possibly time-varying, rate and mode of variation of the estimated signals/parameters. In this paper we propose a novel locally adaptive parallel estimation scheme which can be used to solve the problem of fixed-interval Kalman smoothing in the presence of model uncertainty. The proposed solution...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublicationThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
New approach to noncausal identification of nonstationary stochastic systems subject to both smooth and abrupt parameter changes
PublicationIn this paper we consider the problem of finiteintervalparameter smoothing for a class of nonstationary linearstochastic systems subject to both smooth and abrupt parameterchanges. The proposed parallel estimation scheme combines theestimates yielded by several exponentially weighted basis functionalgorithms. The resulting smoother automatically adjustsits smoothing bandwidth to the type and rate of nonstationarityof the identified...
-
A new look at the statistical identification of nonstationary systems
PublicationThe paper presents a new, two-stage approach to identification of linear time-varying stochastic systems, based on the concepts of preestimation and postfiltering. The proposed preestimated parameter trajectories are unbiased but have large variability. Hence, to obtain reliable estimates of system parameters, the preestimated trajectories must be further filtered (postfiltered). It is shown how one can design and optimize such...
-
Fast Basis Function Estimators for Identification of Nonstationary Stochastic Processes
PublicationThe problem of identification of a linear nonsta-tionary stochastic process is considered and solved using theapproach based on functional series approximation of time-varying parameter trajectories. The proposed fast basis func-tion estimators are computationally attractive and yield resultsthat are better than those provided by the local least squaresalgorithms. It is shown that two...
-
New Approach to Noncasual Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes
PublicationIn this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity...
-
Local basis function estimators for identification of nonstationary systems
PublicationThe problem of identification of a nonstationary stochastic system is considered and solved using local basis function approximation of system parameter trajectories. Unlike the classical basis function approach, which yields parameter estimates in the entire analysis interval, the proposed new identification procedure is operated in a sliding window mode and provides a sequence of point (rather than interval) estimates. It is...
-
Empirical analyses of robustness of the square Msplit estimation
PublicationThe paper presents Msplit estimation as an alternative to methods in the class of robust M-estimation. The analysis conducted showed that Msplit estimation is highly efficient in the identification of observations encumbered by gross errors, especially those of small or moderate values. The classical methods of robust estimation provide then unsatisfactory results. Msplit estimation also shows high robustness to single gross errors...
-
Matrix Strengthening the Identification of Observations with Split Functional Models in the Squared Msplit(q) Estimation Process
PublicationThis article addresses the issue of raising the level of identification of observations with either single or more split functional models in the squared Msplit(q) estimation process. The theoretical part of the study presents the theoretical grounds for the classical method for estimating parameters in a split functional model and proposes a modification of the computational algorithm to increase the quality of the determinations...
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous identification...
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is usually described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous...
-
Spectrum-based modal parameters identification with Particle Swarm Optimization
PublicationThe paper presents the new method of the natural frequencies and damping identification based on the Artificial Intelligence (AI) Particle Swarm Optimization (PSO) algorithm. The identification is performed in the frequency domain. The algorithm performs two PSO-based steps and introduces some modifications in order to achieve quick convergence and low estimation error of the identified parameters’ values for multi-mode systems....
-
Supply current spectrum estimation of digital cores at early design
PublicationPrzedstawiono nową aproksymacyjną metodę obliczania widma prądu zasilania układów cyfrowych. Metoda oparta jest na charakterystyce impulsów prądowych w kategoriach ich czasu narastania, opadania i długości impulsu. Górną granicę widma (obwiednię) można obliczyć posługując się gęstością prawdopodobieństwa zmian stanu sygnałów w węzłach układu cyfrowego. W odróżnieniu od znanych metod, metoda proponowana wykorzystuje ograniczoną...
-
ESTIMATION OF NONSTATIONARY HARMONIC SIGNALS AND ITS APPLICATION TO ACTIVE CONTROL OF MRI NOISE
PublicationA new adaptive comb filtering algorithm, capable of tracking the fundamental frequency and amplitudes of different frequency components of a nonstationary harmonic signal embedded in white measurement noise, is proposed. Frequency tracking characteristics of the new scheme are studied analytically, proving (under Gaussian assumptions and optimal tuning) its statistical efficiency for quasi-linear frequency changes. Laboratory tests...
-
On–line Parameter and Delay Estimation of Continuous–Time Dynamic Systems
PublicationThe problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous...
-
Bearing estimation using double frequency reassignment for a linear passive array
PublicationThe paper demonstrates the use of frequency reassignment for bearing estimation. For this task, signals derived from a linear equispaced passive array are used. The presented method makes use of Fourier transformation based spatial spectrum estimation. It is further developed through the application of two-dimensional reassignment, which leads to obtaining highly concentrated energy distributions in the joint frequency-angle domain...
-
Tonality Estimation and Frequency Tracking of Modulated Tonal Components
PublicationA novel method for tonality estimation and frequency tracking of tonal components modulated in frequency and amplitude is presented. The algorithm detects the local maxima of magnitude spectra corresponding to three contiguous frames of a signal and matches them into the tonal track candidates. The magnitude-based and phase-based methods are used to estimate the frequency jumps between spectrum maxima belonging to the tonal track...
-
Optimal asynchronous estimation of 2D Gaussian-Markov processes
PublicationW artykule rozważa się problem estymacji trajektorii dwuwymiarowych ciągłoczasowych procesów Gaussa-Markowa na podstawie zaszumionych pomiarów wykonywanych w nierównomiernie rozłożonych chwilach czasu. W przypadku takiego problemu, w każdym cyklu pracy algorytmu należy dokonać dyskretnoczasowej predykcji (analogicznie jak w przypadku filtru Kalmana). Niestety zadanie to może być złożone obliczeniowo. Aby rozwiązać ten problem,...
-
Distributed state estimation using a network of asynchronous processing nodes
PublicationWe consider the problem of distributed state estimation of continuous-time stochastic processes using a~network of processing nodes. Each node performs measurement and estimation using the Kalman filtering technique, communicates its results to other nodes in the network, and utilizes similar results from the other nodes in its own computations. We assume that the connection graph of the network is not complete, i.e. not all nodes...
-
Distributed state estimation using a network of asynchronous processing nodes
PublicationWe consider the problem of distributed state estimation of continuous-time stochastic processes using a~network of processing nodes. Each node performs measurement and estimation using the Kalman filtering technique, communicates its results to other nodes in the network, and utilizes similar results from the other nodes in its own computations. We assume that the connection graph of the network is not complete, i.e. not all nodes...
-
Estimation of electrode contact in capacitive ECG measurement
PublicationIn the paper a method of electrode’s contact estimation in capacitive electrocardiogram (CECG) is presented. Proposed solution allows estimation of contact quality for each individual electrode. This enables construction of multi-electrode CECG systems, where electrode pairs can be selected on the basis of the individual electrode contact quality.
-
THE SYNCHROSQUEEZING METHOD IN BEARING ESTIMATION OF STATIONARY SIGNALS FOR PASSIVE SONAR WITH TOWED ARRAY
PublicationIn this paper, a novel method of bearing estimation in a passive sonar system with a towed array is introduced. The classical approach of bearing estimation based on the spatial spectrum [1] is extended by using the synchrosqeezing method that is a part of the reassignment method introduced by Kodera et al. [2]. Using this method leads to a precise bearing estimation. The proposed method requires a relatively small amount of computation,...
-
From limits of quantum operations to multicopy entanglement witnesses and state spectrum estimation.
PublicationBadano ograniczenia na nieliniowe transformacje stanu kwantowego. Wprowadzono strukturalne fizyczne przybliżenia niefizycznych odwzorowań liniowych.Zdefiniowano świadków splątania działających na wielu kopiach danego stanu.Pokazano zastosowanie obserwabli kwantowych w detekcji entropii Tsallisa.