Filters
total: 696
filtered: 567
Search results for: DIELECTRIC RESONATOR ANTENNAS.
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublicationIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
Dual-Polarized Wideband Bandpass Metasurface-Based Filter
PublicationThis paper presents a novel metasurface-based bandpass filter. The structure is realized by simply patterning a double-sided AD250 substrate, and does not require any vias or insertion of lumped elements. The top layer is an annular- aperture-array with multiple inner conductors, whereas the bottom layer is a first-order Hilbert-curve array. FEM-based simulation results of the filter are obtained using HFSS. The experimental validation...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
FPGA Acceleration of Matrix-Assembly Phase of RWG-Based MoM
PublicationIn this letter, the field-programmable-gate-array accelerated implementation of matrix-assembly phase of the method of moments (MoM) is presented. The solution is based on a discretization of the frequency-domain mixed potential integral equation using the Rao-Wilton-Glisson basis functions and their extension to wire-to-surface junctions. To take advantage of the given hardware resources (i.e., Xilinx Alveo U200 accelerator card),...
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublicationThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
A Geometrically Simple Compact Wideband Circularly Polarized Antenna
PublicationA compact broadband wide-slot circular polarization (CP) antenna is proposed. An inverted L-shape parasitic strip at the open end of a microstrip line extension and a slot modification is applied to attain wideband CP. The advantage of this technique is simplicity which makes it readily re-designable for different frequency bands. To demonstrate the concept, three designs working at different frequencies are obtained. The redesign...
-
A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications
PublicationIn this letter, a structure and design procedure of a novel double-flared conical horn antenna with an improved gain and a stable phase center is presented. The antenna incorporates a hybrid ridged and corrugated structure. A double-ridged section is responsible for ensuring a wideband operation, whereas the corrugated section supports the hybrid mode. The antenna impedance bandwidth (VSWR < 2) is 6 GHz to 20 GHz. Excellent performance...
-
Reliable Greedy Multipoint Model-Order Reduction Techniques for Finite-Element Analysis
PublicationA new greedy multipoint model-order reduction algorithm for fast frequency-domain finite-element method simulations of electromagnetic problems is proposed. The location of the expansion points and the size of the projection basis are determined based on a rigorous error estimator. Compared to previous multipoint methods, the quality of the error estimator is significantly improved by ensuring the orthogonality of the projection...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Simple 2-D Direction-of-Arrival Estimation Using an ESPAR Antenna
PublicationIn this letter, it has been shown how an electronically steerable parasitic array radiator (ESPAR) antenna can be used for 2-D direction-of-arrival (DoA) estimation employing received signal strength (RSS) values only. The proposed approach relies on changes in RSS values recorded at the antenna output port observed for different vertical and horizontal directions, while antenna’s main beam sweeps 360° area around the ESPAR antenna. Based...
-
Nonlinearity shaping in nanostructured glass-diamond hybrid materials for optical fiber preforms
PublicationNanodiamond integration with optical fibers has proved a compelling methodology for magneto-optics. We reveal that the applicability of nanodiamonds in nonlinear optics goes beyond the previous demonstrations of frequency converters. Instead, we exploit the recently reported volumetric integration of nanodiamonds along the optical fiber core and show that the nonlinear response of glasses can be manipulated by nanodiamonds. By...
-
Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
PublicationIn this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing...
-
Designing a high-sensitivity dual-band nano-biosensor based on petahertz MTMs to provide a perfect absorber for early-stage non-melanoma skin cancer diagnostic
PublicationThe purpose of this study is development of a novel high-performance low-Petahertz (PHz) biosensor for non-melanoma skin cancer (NMSC) diagnosis. The presented device is designed to work within a microwave imaging regime, which is a promising alternative to conventional diagnostic methods such as visual examination, dermoscopy, and biopsy. The suggested biosensor incorporates a dual-band perfect absorber (operating bands at 0.909...
-
On geometry parameterization for simulation-driven design closure of antenna structures
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in antenna design, especially final tuning of geometry parameters. From the reliability standpoint, the recommended realization of EM-driven design is through rigorous numerical optimization. It is a challenging endeavor with the major issues related to the high computational cost of the process, but also the necessity of handling several objectives and constraints...
-
Methods of data extraction from sub-bottom profiler's signal
PublicationData obtain during sounding Gdansk Bay with SES-2000 Standard parametric sub-bottom profiler has two types of information: envelope and pure signal. First is used to plot echograms in real time and contain envelope of echo. The second one is stored during sounding and can be processed after recording data. Comparison of results will be shown and discussed. First step in investigation was proper configuration of small measurement...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
A gap waveguide-based mechanically reconfigurable phase shifter for high-power Ku-band applications
PublicationThis paper presents a novel design of a low-loss, reconfgurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves. The advantage of GGW...
-
Time-Gating method with automatic calibration for accurate measurements of electrically small antenna radiation patterns in Non-Anechoic environments
PublicationNon-anechoic sites represent a cheap alternative to measurements of antennas in dedicated facilities. However, due to a high noise—from the external EM signal sources and multipath interferences—the quality of radiation patterns obtained in non-anechoic conditions is poor. The characteristics can be corrected using a time-gating method (TGM), which involves filtering of the noise based on temporal analysis of the measured signals....
-
The influence of azide and imidazole on the properties of Mn- and Cd-based networks: conductivity and nonlinear phenomena
PublicationWe report a study on a family of four new Mn- and Cd-azide-imidazolate-based compounds with various crystal architectures. Notably, three of these compounds display noncentrosymmetric crystal arrangements at room temperature, a rare phenomenon in hybrid organic–inorganic materials. Both nonlinear optical (NLO) and electrical phenomena in these compounds are observed. The NLO processes include second and third harmonic generation,...
-
Enhanced Spectroscopic Insight into Acceptor-Modified Barium Strontium Titanate Thin Films Deposited via the Sol–Gel Method
PublicationIn the present paper, composite thin films of barium strontium titanate (BaxSr1−xTiO3) with an acceptor modifier (magnesium oxide—MgO) were deposited on metal substrates (stainless steel type) using the sol–gel method. The composite thin films feature BaxSr1−xTiO3 ferroelectric solid solution as the matrix and MgO linear dielectric as the reinforcement, with MgO concentrations ranging from 1 to 5 mol%. Following thermal treatment...
-
Fading Modelling in Dynamic Off-Body Channels
PublicationThis paper presents an off-body fading channel model for Body Area Networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in an indoor environment (a medium-size room with furniture, mostly consisting of wooden tables and chairs) have been measured:...
-
Asymmetrical-Slot Antenna with Enhanced Gain for Dual-Band Applications
PublicationDual-band operation is an important feature of antennas to be applied in modern communication systems. Although high gain of radiators is rarely of concern in urban areas with densely located broadcasting stations, it becomes crucial for systems operating in more remote environments. In this work, a dual-band antenna with enhanced bandwidth is proposed. The structure consists of a driven element in the form of an asymmetrical radiator/slot...
-
Analysis of circular polarization antenna design trade‐offs using low‐cost EM‐driven multiobjective optimization
PublicationCircular polarization (CP) antennas are vital components of modern communication systems. Their design involves handling several requirements such as low reflection and axial ratio (AR) within the frequency range of interest. Small size is an important criterion for antenna mobility which is normally achieved as a by‐product of performance‐oriented modifications of the structure topology. In this work, multiobjective optimization...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Coupled nonlinear Schrödinger equations in optic fibers theory
PublicationIn this paper a detailed derivation and numerical solutions of CoupledNonlinear Schr¨odinger Equations for pulses of polarized electromagnetic wavesin cylindrical fibers has been reviewed. Our recent work has been compared withsome previous ones and the advantage of our new approach over other methods hasbeen assessed. The novelty of our approach lies is an attempt to proceed withoutloss of information within the frame of basic...
-
Electronic conductivity in the SiO2-PbO-Fe2O3 glass containing magnetic nanostructures
PublicationThe linear impedance spectra of iron–silicate–lead glass samples were measured in the frequency range from 1 MHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by means of XRD and atomic force microscopy. Local electrical and magnetic properties of the samples were tested with the aid of electrostatic force microscopy (EFM) and magnetic force microscopy (MFM). The obtained results show...
-
Electrical properties and structure of lead-borate glass containing iron ions.
PublicationThe ac and dc conductivity in iron–lead-borate glass samples was investigated in the frequency range from 1 mHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by the means of atomic force microscopy (AFM) and the crystalline phases (if present) were identified by the means of X-ray diffractometry. Two types of ac electrical behaviour were observed. The first group of glass samples which...
-
The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics
PublicationBacteriochlorophylls (BChls) c, d, and e are the main light-harvesting pigments of green photosynthetic bacteria that self-assemble into nanostructures within the chlorosomes forming the most efficient antennas of photosynthetic organisms. All previous models of the chlorosomal antennae, which are quite controversially discussed because no single crystals could be grown so far from these organelles, involve a strong hydrogen-bonding...
-
Simple Superstrate Antenna for Connectivity Improvement in Precision Farming Applications
PublicationIn this paper, a concept of a simple circularly polarized antenna with partially reflecting surface (PRS) has been adopted for precision farming applications. The investigation contains an analysis of the dependence of the antenna performance on the elements number in the PRS structure in X- and Ka-band frequencies. Especially meaningful parameters from point-to-point connectivity perspective are...
-
Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design
PublicationParameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and...
-
Reliable Surrogate Modeling of Antenna Input Characteristics by Means of Domain Confinement and Principal Components
PublicationA reliable design of contemporary antenna structures necessarily involves full-wave electromagnetic (EM) analysis which is the only tool capable of accounting, for example, for element coupling or the effects of connectors. As EM simulations tend to be CPU-intensive, surrogate modeling allows for relieving the computational overhead of design tasks that require numerous analyses, for example, parametric optimization or uncertainty...
-
Filter-Hilbert Method for Automatic Correction of Non-Anechoic Antenna Measurements with Embedded Self-Calibration Mechanism
PublicationOne of the most important steps in the process of antenna development involves measurements of its prototype. Far-field performance of radiators is normally characterized in strictly controlled environments such as anechoic chambers which can ensure certification-grade accuracy. Unfortunately, they are also characterized by high construction costs which might not be justified for low-budget research and/or teaching-related activities....
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublicationModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
Model Management for Low-Computational-Budget Simulation-Based Optimization of Antenna Structures Using Nature-Inspired Algorithms
PublicationThe primary objective of this study is investigation of the possibilities of accelerating nature-inspired optimization of antenna structures using multi-fidelity EM simulation models. The primary methodology developed to achieve acceleration is a model management scheme which the level of EM simulation fidelity using two criteria: the convergence status of the optimization algorithm, and relative quality of the individual designs...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
PublicationOver the past few years, metal halide perovskite solar cells have made significant advances. Currently, the single-junction perovskite solar cells reach a conversion efficiency of 25.7%. Perovskite solar cells with a wide band gap can also be used as top absorber layers in multi-junction tandem solar cells. We examined the dynamical and thermal stability, electronic structure, and optical features of In2PtX 6 (X = Cl, Br, and I)...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublicationThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublicationThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...
-
Frequency Selective Surface Based MIMO Antenna Array for 5G Millimeter-Wave Applications
PublicationAbstract: In this paper a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2×2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabri-cated on Rogers RT/Duroid high frequency substrate...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublicationDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
THE APPLICATION EFFECTS OF CONTINUOUS SATELLITE MEASUREMENTS OF RAILWAY LINES
PublicationThe paper presents results of satel lite surveying of the railway's rout es, which have been conducted just after starting in Poland (in 2008) the Active Geodesy Network ASG-EU POS. Afterwards it was possible to effectively utilize the GNSS survey ing results for the inventory of the (exploring) railways in service. Already at the beginning of 2009, the research team from Gdansk University of Technology and Naval Academy in Gdynia,...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublicationIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures
PublicationMiniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
A Low-Cost System for Far-Field Non-Anechoic Measurements of Antenna Performance Figures
PublicationPrototype measurements are the key step in the development of antenna structures. Typically, their far-field characteristics are validated in expensive, dedicated facilities such as open range sites, or anechoic chambers. Despite being necessary for obtaining high-precision data (e.g., for device qualification), the use of costly infrastructure might not be fully justified when the main goal of measurements includes demonstration...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...