Filters
total: 713
filtered: 680
Search results for: One-Dimensional Dynamics
-
Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe test the potentials available for elemental carbon, with the scope to choose the potential suitable for the modeling of penta-graphene, the latest two dimensional carbon allotrope. By using molecular statics and molecular dynamics simulations we show that there is only one potential e namely the Tersoff-type potential proposed by Erhart and Albe in 2005 e which is able to correctly describe all the important features of penta-graphene....
-
Dynamics of Ice Jam Formation and Release
PublicationThe numerical model DynaRICE and its application to ice jam formation and release is presented. The model is a two-dimensional coupled flow and ice dynamic model. The ice dynamic component, which includes both the internal ice resistance and boundary friction on ice motion, uses a Lagrangian SPH method. The hydrodynamic component of the model uses a streamline upwind finite element method, which is capable of simulating trans-critical...
-
Prediction of coking dynamics for wet coal charge
PublicationA one-dimensional transient mathematical model describing thermal and flow phenomena during coal coking in an oven chamber was studied in the paper. It also accounts for heat conduction in the ceramic oven wall when assuming a constant temperature at the heating channel side. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. The histories of temperature, gas evolution and internal...
-
How much a geometrical model of a honeycomb seal can be simpli ed in the CFD calculation
PublicationThis paper presents the inuence of geometry simplication on the results obtained in the computational fluid dynamics simulation. The subject of simulation was part of the honeycomb seal located at the inlet to high pressure part of a steam turbine. There were three different geometrical models assumed in the calculations. First one was two-dimensional case and two others were three dimensional, one with the radius of curvature...
-
A concept of zero-dimensional and three-dimensional thermodynamic modelling of steam storage in a steam cycle
PublicationThis work presents the thermodynamic model of steam storage in a steam cycle. The innovative steam storage is an integral part of the unit and thus responds quickly to changes in load. This enhances the primary control reserve while maintaining high efficiency of energy conversion. With regard to power plants, it improves the operational safety of generation units, as it prevents boiler and turbines overload in the case of steep...
-
The efficiency of turbomachinery in the zero-and three-dimensional approaches
PublicationEfficiency of turbomachinery is usually defined using an isentropic process. This approach provides a reliable reference point only when pressure and temperature measurements are available, e.g. at the casing inlet and outlet. In the case of a single stage internal efficiency determination the reference point is difficult. Computational fluid dynamics allows for an exact calculation of values of losses occurring in a turbine...
-
Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations
PublicationInteraction between 2, 3, 5 and 7 atomic layers of gold and a (111) silicon surface was investigated with the molecular dynamics simulation method. The simulation of the diffusion interaction between gold and silicon in the temperature range 425-925 K has been carried out. The peculiarities of the concentration changes of the interacting components and the atomic density at the boundary...
-
Combining Computational Fluid Dynamics with a Biokinetic Model for Predicting Ammonia and Phosphate Behavior in Aeration Tanks
PublicationThe aim of this study was to use computational fluid dynamics for predicting the behavior of reactive pollutants (ammonia and phosphate) in the aerobic zone of the bioreactor located at the Wschod wastewater treatment plant in Gdansk, Poland. The one-dimensional advection-dispersion equation was combined with simple biokinetic models incorporating the Monod-type expressions as source terms for the two pollutants. The problem was...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublicationWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Detecting coupling directions with transcript mutual information: A comparative study
PublicationCausal relationships are important to understand the dynamics of coupled processes and, moreover, to influence or control the effects by acting on the causes. Among the different approaches to determine cause-effect relationships and, in particular, coupling directions in interacting random or deterministic processes, we focus in this paper on information-theoretic measures. So, we study in the theoretical part the difference between...
-
On Nonlinear Dynamic Theory of Thin Plates with Surface Stresses
PublicationWe discuss the modelling of dynamics of thin plates considering surface stresses according to Gurtin–Murdoch surface elasticity. Taking into account the surface mass density we derive the two-dimensional (2D) equations of motion. For the reduction of the three-dimensional (3D) motion equations to the 2D ones we use the trough-the-thickness integration procedure. As a result, the 2D dynamic parameters of the plate depend not only...
-
Unusual dynamics and nonlinear thermal self-focusing of initially focused magnetoacoustic beams in a plasma
PublicationUnusual thermal self-focusing of two-dimensional beams in plasma which axis is parallel to the equilibrium straight magnetic field is considered. The equi- librium parameters of plasma determine scenario of a beam divergence (usual or unusual) which is stronger as compared with a flow without magnetic field. Nonlinear thermal self-action of a magnetosonic beam behaves differently in the ordinary and unusual cases. Damping of wave...
-
Numerical Modeling of Water and Ice Dynamics for Analysis of Flow Around the Kiezmark Bridge Piers
PublicationThis paper presents the results of a numerical model study on the effect of ice on the proposed bridge piers in the Vistula River outlet and its effect on flow conditions in the river. The model DynaRICE is used in this study, which is a two-dimensional hydro-ice dynamic numerical model developed for dynamic ice transport and jamming in rivers. To simulate river hydrodynamics in the vicinity of the bridge piers, 2-dimensional numerical...
-
Standing Waves and Acoustic Heating (or Cooling) in Resonators Filled with Chemically Reacting Gas
PublicationStanding waves and acoustic heating in a one-dimensional resonator filled with chemically reacting gas, is the subject of investigation. The chemical reaction of A ! B type, which takes place in a gas, may be reversible or not. Governing equations for the sound and entropy mode which is generated in the field of sound are derived by use of a special mathematical method. Under some conditions, sound waves propagating in opposite...
-
Nilpotent singularities and chaos: Tritrophic food chains
PublicationLocal bifurcation theory is used to prove the existence of chaotic dynamics in two well-known models of tritrophic food chains. To the best of our knowledge, the simplest technique to guarantee the emergence of strange attractors in a given family of vector fields consists of finding a 3-dimensional nilpotent singularity of codimension 3 and verifying some generic algebraic conditions. We provide the essential background regarding...
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublicationWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublicationThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
A Numerical Model Study on Ice Boom in a Coastal Lake
PublicationA numerical study on the effectiveness of the proposed ice boom to be installed near the entrance of Lake Notoro, Hokkaido, Japan to prevent sea ice moving into the lake is presented. A two-dimensional hydro–ice dynamics model was modified to allow for the treatment of ice-boom interaction with the effect of tidal current. The numerical model is a coupled hydrodynamic and ice dynamic model. The ice dynamic component uses a Lagrangian...
-
An intelligent cellular automaton scheme for modelling forest fires
PublicationForest fires have devastating consequences for the environment, the economy and human lives. Understanding their dynamics is therefore crucial for planning the resources allocated to combat them effectively. In a world where the incidence of such phenomena is increasing every year, the demand for efficient and accurate computational models is becoming increasingly necessary. In this study, we perform a revision of an initial proposal...
-
Three phase transient model of wet coal pyrolysis
PublicationA one-dimensional transient mathematical model was developed to describe the thermal and flow phenomena during coal pyrolysis in a coke oven. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. It was successfully validated with industrial-scale measurements of temperature change in the middle-plane of the coke oven chamber. The evolution of temperature and pressure, distributions...
-
ON DYNAMICS OF ELASTIC NETWORKS WITH RIGID JUNCTIONS WITHIN NONLINEAR MICRO-POLAR ELASTICITY
PublicationWithin the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider a three-dimensional elastic network made of three families of elastic fibers connected...
-
Resonances and Dissociative Electron Attachment in HNCO
PublicationIn a combined experimental and theoretical study, we probe the dissociative electron attachment in isocyanic acid HNCO. The experimental absolute cross section for the NCO− fragment shows a sharp onset and fine structures near the threshold. The autoionizing state responsible for the dissociative attachment is found in both the R-matrix calculation and using analytic continuation in the coupling constant. The involved A' resonance...
-
A role of the heat and work uncompensatedtransformations in the balance of entropy and theturbomachinery efficiency
PublicationIn the paper we have presented a procedure of estimating a role of the uncompensated transformation of heat and work in ow of viscous and heat conducting uid. The procedure was introduced by Professor Romuald Puzyrewski and is essential in local, in time and space, balance of entropy. Furthermore this unique approach leads to redenition the eciency of uid-ow machinery in three-dimensional modeling using CFD (Computational Fluid...
-
Unusual divergence of magnetoacoustic beams
PublicationTwo-dimensional magnetosonic beams directed along a line forming a constant angle h with the equilibrium straight magnetic field are considered. Perturbations in a plasma are described by the system of ideal magnetohydrodynamic equations. The dynamics of perturbations in a beam are different in the cases of fast and slow modes, and it is determined by h and equilibrium parameters of a plasma. In particular, a beam divergence may...
-
Visualization of short-term heart period variability with network tools as a method for quantifying autonomic drive
PublicationWe argue that network methods are successful in detecting nonlinear properties in the dynamics of autonomic nocturnal regulation in short-term variability. Two modes of visualization of networks constructed from RR-increments are proposed. The first is based on the handling of a state space. The state space of RR-increments can be modified by a bin size used to code a signal and by the role of a given vertex as the representation...
-
Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach
PublicationThe paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow...
-
Spectroscopic studies on physicochemical properties of selected unsymmetrical bisacridine derivatives and NMR analysis of their interactions with the model sequence Pu22 aided by molecular dynamics
PublicationIn recent years, new promising acridine derivatives have appeared, belonging to the unsymmetrical bisacridines (UAs) family with high anticancer activity. Both their physicochemical properties and their mechanism of action at the molecular level have not been thoroughly analyzed so far. Four derivatives were selected for the study, termed as: C-2028, C-2041, C-2045 and C-2053. The first aim of this work was to determine the protonation...
-
Non-Perfect Propagation of Information to a Noisy Environment with Self-Evolution
PublicationWe study the non-perfect propagation of information for evolving a low-dimensional environment that includes self-evolution as well as noisy initial states and analyse the interrelations between the degree of objectivization and environment parameters. In particular, we consider an analytical model of three interacting qubits and derive its objectivity parameters. The numerical analysis shows that the quality of the spectrum broadcast...
-
Analiza drgań kładki kompozytowej wywołanych działaniem wiatru
PublicationW pracy omówiono sposób przeprowadzenia uproszczonej, numerycznej analizy drgań kładki kompozytowej wywołanych działaniem wiatru. Rozważaniom poddano swobodnie podpartą konstrukcję o rozpiętości 16 m i przekroju w kształcie litery U. W pierwszej kolejności przeprowadzono dwuwymiarową analizę opływu niepodatnego kształtu przekroju kładki w poziomym strumieniu wiatru o prędkości 10 m/s. Obliczenia numeryczne przeprowadzono programem...
-
Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC
PublicationTriplet−triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration...
-
Deformable model of a butterfly in motion on the example of Attacus atlas
PublicationInsect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. High-speed videogrammetry was used to capture the wing kinematics and deformations. The movements of...
-
About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam
PublicationThe dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma....
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Flood Modelling and Risk Analysis of Cinan Feizuo Flood Protection Area, Huaihe River Basin
PublicationThis study evaluated multiple aspects of flood risks and effects on the Cinan Feizuo flood protection area in the Huaihe River basin. Flooding remains a leading problem for infrastructure, especially in urban, residential areas of the region. Effective flood modeling for urbanized floodplains is challenging, but MIKE (ID-2D) is paramount for analyzing and quantifying the risk in the vulnerable region. The Saint-Venant equation...
-
Influence and development of new kinematic systems in flat surface lapping
PublicationThe face grinding and lapping technology is widely used in the field of the precise and ultraprecise manufacturing. It has become an indispensable technology in the manufacture of many parts. An absence of material restrictions allows machining both metal and non-metallic materials, including technical ceramics [1]. Nowadays there are mainly two kinematic systems in lapping machines [2]. The machining plane-parallel surfaces is...
-
Molecular hydrogen solvated in water – A computational study
PublicationThe aqueous hydrogen molecule is studied with molecular dynamics simulations at ambient temperature and pressure conditions, using a newly developed flexible and polarizable H2 molecule model. The design and implementation of this model, compatible with an existing flexible and polarizable force field for water, is presented in detail. The structure of the hydration layer suggests that first-shell water molecules accommodate the...
-
Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles
PublicationBeing able to systematically modify the electric properties of nano- and microparticles opens up new possibilities for the bottom-up fabrication of advanced materials such as the fabrication of one-dimensional (1D) colloidal and granular materials. Fabricating 1D structures from individual particles offers plenty of applications ranging from electronic sensors and photovoltaics to artificial flagella for hydrodynamic propulsion....
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublicationA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
Modeling an Industrial Revolution: How to Manage Large-Scale, Complex IoT Ecosystems?
PublicationAdvancements around the modern digital industry gave birth to a number of closely interrelated concepts: in the age of the Internet of Things (IoT), System of Systems (SoS), Cyber-Physical Systems (CPS), Digital Twins and the fourth industrial revolution, everything revolves around the issue of designing well-understood, sound and secure complex systems while providing maximum flexibility, autonomy and dynamics. The aim of the...
-
Yade-open DEM: an open-source software using a discrete element methodto simulate granular material
PublicationPurpose - YADE-OPEN DEM is an open source software based on the Discrete Element Method which uses object oriented programming techniques. The paper describes the softwarearchitecture.Design/methodology/approach - The DEM chosen uses position, orientation, velocity and angular velocity as independent variables of simulated particles which are subject to explicit leapfrog time-integration scheme (Lagrangian method). The three-dimensional...
-
Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy.
PublicationImidazoacridinone C-1311 (Symadex®) is a powerful antitumor agent, which successfully made its way through the Phase I clinical trials and has been recommended for Phase II few a years ago. It has been shown experimentally that during the initial stage of its action C-1311 forms a relatively stable intercalation complex with DNA, yet it has shown no base-sequence specificity while binding to DNA. In this paper, the d(CGATCG)2:C-1311...
-
Fast Multi-Objective Aerodynamic Optimization Using Sequential Domain Patching and Multifidelity Models
PublicationExploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO) problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD) model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a large number of simulations necessary to yield a set of designs representing the best possible...
-
Modelling hydraulic and capillary-driven two-phase fluid flow in unsaturated concretes at the meso-scale with a unique coupled DEM-CFD technique
PublicationThe goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete...
-
On thermal stability of topological qubit in Kitaev's 4D model
PublicationWe analyse stability of the four-dimensional Kitaev model-a candidate for scalable quantum memory - in finite temperature within the weak coupling Markovian limit. It is shown that, below a critical temperature, certain topological qubit observables X and Z possess relaxation times exponentially long in the size of the system. Their construction involves polynomial in system size algorithm which uses as an input the results of...
-
Fast Low-fidelity Wing Aerodynamics Model for Surrogate-Based Shape Optimization
PublicationVariable-fidelity optimization (VFO) can be efficient in terms of the computational cost when compared with traditional approaches, such as gradient-based methods with adjoint sensitivity information. In variable-fidelity methods, the directoptimization of the expensive high-fidelity model is replaced by iterative re-optimization of a physics-based surrogate model, which is constructed from a corrected low-fidelity model. The success...
-
Two-dimensional gas chromatography – principles and application in fruits analysis
PublicationTwo-dimensional gas chromatography is a rapidly developing analytical technique. One of the major uses of this technique is its use for food analysis. The paper presents the principle of operation and history of this analytical technique. The specification of the two-dimensional gas chromatography technique has been discussed. The principles of separation of ingredients and application of the method, particularly in the analysis...
-
Molecular transformation of dissolved organic matter in manganese ore-mediated constructed wetlands for fresh leachate treatment
PublicationThe organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were...
-
A New Quaternion Encryption Scheme for Image Transmission
PublicationQuaternions are hypercomplex number of rank 4. They are often applied to mechanics in three-dimensional space and considered as one of the best ways to represent rotations. In this paper a new encryption scheme, based on the rotation of data vector in three-dimensional space around another quaternion (key) is proposed. A computer-based simulation was created to analyze the potential of the proposed encryption technique.
-
Solution of the dike-break problem using finite volume method and splitting technique
PublicationIn the paper the finite volume method (FVM) is presented for the solution of two-dimensional shallow water equations. These equations are frequently used to simulate the dam-break and dike-break induced flows. The applied numerical algorithm of FVM is based on the wave-propagation algorithm which ensures a stable solution and simultaneously minimizes the numerical errors. The dimensional decomposition according to the coordinate...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublicationThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...