Filters
total: 200
filtered: 194
Chosen catalog filters
Search results for: BIOHEAT EQUATION, IMPLICIT NUMERICAL SCHEME
-
Acoustic streaming caused by some types of aperiodic sound. Buildup of acoustic streaming
PublicationThe analysis of streaming caused by aperiodic sound of different types (switched on at transducer sound or sound determined by initial conditions) is undertaken. The analysis bases on analytical governing equation for streaming Eulerian velocity, which is a result of decomposition of the hydrodynamic equations into acoustic and non-acoustic parts. Its driving force (of acoustic nature) represents a sum of two terms; one is the...
-
On the Dynamics of a Visco–Piezo–Flexoelectric Nanobeam
PublicationThe fundamental motivation of this research is to investigate the effect of flexoelectricity on a piezoelectric nanobeam for the first time involving internal viscoelasticity. To date, the effect of flexoelectricity on the mechanical behavior of nanobeams has been investigated extensively under various physical and environmental conditions. However, this effect as an internal property of materials has not been studied when the...
-
Control of the bridge span vibration with high coefficient passive damper. Theoretical consideration and application
PublicationThe research was carried out due to the problem of vibration on the lively pedestrian drawbridge across the Motlawa River in the city of Gdansk. In the design stage, the main span of the footbridge showed unfavorable dynamic properties, which may create a comfort problem for pedestrians. The first vertical bending eigenfrequency was recognized as 1.64 Hz. The original design of the footbridge was equipped with a driving cylinder...
-
Activation Energy and Inclination Magnetic Dipole Influences on Carreau Nanofluid Flowing via Cylindrical Channel with an Infinite Shearing Rate
PublicationThe infinite shear viscosity model of Carreau fluid characterizes the attitude of fluid flow at a very high/very low shear rate. This model has the capacity for interpretation of fluid at both extreme levels, and an inclined magnetic dipole in fluid mechanics has its valuable applications such as magnetic drug engineering, cold treatments to destroy tumors, drug targeting, bio preservation, cryosurgery, astrophysics, reaction kinetics,...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublicationThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
ANALIZA NUMERYCZNA WPŁYWU POZIOMU MORZA NA PRZEBIEG WEZBRAŃ W NADMORSKICH CIEKACH POWIERZCHNIOWYCH NA PRZYKŁADZIE POTOKU STRZYŻA W GDAŃSKU
PublicationW dzisiejszych czasach coraz większym problemem stają się podtopienia na terenach zurbanizowanych. Biorąc to pod uwagę, należy większą wagę przyłożyć do prawidłowego obliczania przepustowości koryta. Jednym z czynników wpływających na nie są warunki na odpływie. W przypadku potoków nadmorskich zależą one ściśle od poziomu morza. W pracy podjęto próbę wyznaczenia wpływu poziomu morza na przebieg wezbrań w nadmorskich ciekach powierzchniowych....
-
Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis
PublicationOur analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli ferromagnetic nanobeam accounting for a size-dependent model through assuming surface effects. In the framework of the flexomagnetic phenomenon, the large deflections are investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress coupled to the gradient of strain generates a scale-dependent Hookean stress-strain...
-
Simplified Approach for Broadband RF Testing of Low Loss Magneto-Dielectric Samples
PublicationIn this paper, an attractive measurement techniqueis proposed to retrieve the broadband permittivity and permeabil-ity of the magneto-dielectric materials. The proposed techniqueis quite novel which mitigates the major problems associatedwith the conventional broadband RF material characterizationtechniques such as numerical instability and phase uncertaintywhen the length of the sample exceeds...
-
Planar Microwave Bragg Reflector Resonant Dielectric Sensor
PublicationIn this paper, a periodic structure is used to design a microwave Bragg reflector with the help of hexagonal lattice, which provides a 5 GHz wide stopband between the low-pass band with cut-off frequency 2.6 GHz and the bandpass response with start and stop frequency 7.8 GHz and 10.5 GHz, respectively. A defect in lattice allows passing a narrowband signal at 6 GHz which is found, from the dispersion relation, to be in the region...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublicationIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Mathematical Modeling of the Impact Range of Sewage Discharge on the Vistula Water Quality in the Region of Włocławek
PublicationThe paper presents results of analysis of the industrial sewage discharge influence at km 688 + 250 of the Vistula River on water quality. During the analysis, two-dimensional models of flow, impurities and temperature transport were used. Hydrological conditions of the analyzed section of the river, characteristic flows and bathymetry of the riverbed in the first instance were defined. Calculations of velocity distribution at...
-
Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach
PublicationIn this investigation, a computational analysis is conducted to study a magneto-thermoelastic problem for an isotropic perfectly conducting half-space medium. The medium is subjected to a periodic heat flow in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a new generalized model has been investigated to address the considered problem. The introduced model can be formulated by combining...
-
Modeling and control of a redundantly actuated variable mass 3RRR planar manipulator controlled by a model-based feedforward and a model-based-proportional-derivative feedforward–feedback controller
PublicationIn the paper, dynamics of a complex mechatronics system is considered. A redundantly actuated planar manipulator is the base of the mechanical part of it. It is a 3RRR 1 platform based parallel manipulator. To control its trajectory, a model-based feedforward controller is employed. Three aspects are fundamental in the presented investigations. The first focus is on development of an accurate numerical model used to solve the inverse...
-
Double-diffusive natural convection energy transfer in magnetically influenced Casson fluid flow in trapezoidal enclosure with fillets
PublicationThe prime motive of this disquisition is to deal with mathematical analysis of natural convection energy transport driven by combined buoyancy effects of thermal and solutal diffusion in a trapezoidal enclosure. Casson fluid rheological constitutive model depicting attributes of viscoelastic liquids is envisioned. The influence of the inclined magnetic field governed by Lorentz field law is also considered. To raise the essence...
-
On ship roll resonance frequency
PublicationThe paper deals with the problem of modeling of rolling motion under a variety of excitation parameters. Special emphasis is put on the analysis and prediction of the frequency of the resonant mode of rolling, since it is often an essential issue in terms of motion of a ship related to her safety against capsizing or excessive amplitudes of roll. The research is performed for both free rolling and excited rolling and it is based...
-
Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model
PublicationThis paper presents experimental verification of the mathematical model of unsaturated flow in double‐porosity soils developed by the asymptotic homogenization method. A series of one‐dimensional infiltration experiments was carried out in a column filled with a double‐porosity medium composed of a mixture of sand and sintered clayey spheres arranged in a periodic manner. The unsaturated hydraulic properties of each porous material...
-
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
PublicationThis article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework...
-
Design of High-Performance Scattering Metasurfaces through Optimization-Based Explicit RCS Reduction
PublicationThe recent advances in the development of coding metasurfaces created new opportunities in realization of radar cross section (RCS) reduction. Metasurfaces, composed of optimized geometries of meta-atoms arranged as periodic lattices, are devised to obtain desired electromagnetic (EM) scattering characteristics. Despite potential benefits, their rigorous design methodologies are still lacking, especially in the context of controlling...
-
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces
PublicationDensity functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different...
-
Elastic scattering of electrons by water: An ab initio study
PublicationIn this work we devise a theoretical and computational method to compute the elastic scattering of electrons from a non-spherical potential, such as in the case of molecules and molecular aggregates. Its main feature is represented by the ability of calculating accurate wave functions for continuum states of polycentric systems via the solution of the Lippmann-Schwinger equation, including both the correlation effects and multi-scattering...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Numerical Analysis of an Impact of Planned Location of Sewage Discharge on Natura 2000 Areas – The Dead Vistula Region Case Study
PublicationThis article presents results of an analysis of impact of a designed discharge of contaminated water into the Dead Vistula (Wisła Martwa) in the region of the Isthmus (Przesmyk) with the aim of determination of a possible effect of the pollution onto protected areas of Natura 2000 (bird habitats and sites, especially the Bird Paradise – Ptasi Raj) nature reserve. The analysis was conducted on the basis of the two-dimensional modelling...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
EM-Driven Size Reduction and Multi-Criterial Optimization of Broadband Circularly-Polarized Antennas Using Pareto Front Traversing and Design Extrapolation
PublicationMaintaining small size has become an important consideration in the design of contemporary antenna structures. In the case of broadband circularly polarized (CP) antennas, miniaturization is a challenging process due to the necessity of simultaneous handling of electrical and field properties (reflection, axial ratio, gain), as well as ensuring sufficient frequency range of operation, especially at the lower edge of the antenna...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization
PublicationMiniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance...
-
Isolation of the relative decrease in magnetic permeability contribution to reluctance of an open magnetic circuit based on stray field measurements
PublicationThe goal of the study was to evaluate a relative decrease in magnetic permeability in open magnetic circuits based on stray magnetic field measurements. The boundary element method was used to simulate magnetic circuits with variable geometry and variable magnetic permeability. The simulated magnetic circuits were rectangular or bone-shaped flat samples. Reluctance was increased in the middle of the samples resulting in leakage...
-
Combining Computational Fluid Dynamics with a Biokinetic Model for Predicting Ammonia and Phosphate Behavior in Aeration Tanks
PublicationThe aim of this study was to use computational fluid dynamics for predicting the behavior of reactive pollutants (ammonia and phosphate) in the aerobic zone of the bioreactor located at the Wschod wastewater treatment plant in Gdansk, Poland. The one-dimensional advection-dispersion equation was combined with simple biokinetic models incorporating the Monod-type expressions as source terms for the two pollutants. The problem was...
-
Testing Stability of Digital Filters Using Multimodal Particle Swarm Optimization with Phase Analysis
PublicationIn this paper, a novel meta-heuristic method for evaluation of digital filter stability is presented. The proposed method is very general because it allows one to evaluate stability of systems whose characteristic equations are not based on polynomials. The method combines an efficient evolutionary algorithm represented by the particle swarm optimization and the phase analysis of a complex function in the characteristic equation....
-
SPECTRAL RESPONSE OF STATIONARY JACK-UP PLATFORMS LOADED BY SEA WAVES AND WIND USING PERTURBATION METHOD
PublicationThe paper addresses non-linear vibrations of offshore jack-up drilling platforms loaded by sea waves and wind in their stationary condition using the perturbation method. Non-linearity of dynamic equations of motion for fixed offshore platforms yields from two factors. The first is load excitation generating non-linear velocity coupling in a dynamic system. This coupling is inherent in the modified Morison equation, involving the...
-
Novel analysis methods of dynamic properties for vehicle pantographs
PublicationTransmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should...
-
On the generalized model of shell structures with functional cross-sections
PublicationIn the present study, a single general formulation has been presented for the analysis of various shell-shaped structures. The proposed model is comprehensive and a variety of theories can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with the presented equations. In other words, various types of shell structures, including cylindrical, conical, spherical, elliptical, hyperbolic, parabolic,...
-
Preliminary Identification of Quantitative Factors Determining the Duration of Court Proceedings in Commercial Cases
PublicationPurpose: The aim of the article was to identify factors that are linear combinations of the variables under scrutiny that affect the duration of court proceedings. Design/Methodology/Approach: This research was conducted on commercial cases, based on the Principal Components Analysis (PCA). The original variables were grouped into factors that are correlated with each other. The Kaiser Criterion (own value >1) was chosen as the...
-
Compressive Sensing Approach to Harmonics Detection in the Ship Electrical Network
PublicationThe contribution of this paper is to show the opportunities for using the compressive sensing (CS) technique for detecting harmonics in a frequency sparse signal. The signal in a ship’s electrical network, polluted by harmonic distortions, can be modeled as a superposition of a small number of sinusoids and the discrete Fourier transform (DFT) basis forms its sparse domain. According to the theory of CS, a signal may be reconstructed...
-
Modeling of medium flow processes in transportation pipelines - the synthesis of their state-space models and the analysis of the mathematical properties of the models for leak detection purposes
PublicationThe dissertation concerns the issue of modeling the pipeline flow process under incompressible and isothermal conditions, with a target application to the leak detection and isolation systems. First, an introduction to the model-based process diagnostics is provided, where its basic terminology, tools, and methods are described. In the following chapter, a review of the state of the art in the field of leak detection and isolation...
-
A Generalized Framework Towards Structural Mechanics of Three-layered Composite Structures
PublicationThree-layered composite structures find a broad application. Increasingly, composites are being used whose layer thicknesses and material properties diverge strongly. In the perspective of structural mechanics, classical approaches to analysis fail at such extraordinary composites. Therefore, emphasis of the present approach is on arbitrary transverse shear rigidities and structural thicknesses of the individual layers. Therewith...
-
Numerical Analysis of the Influence of 2D Dispersion Parameters on the Spread of Pollutants in the Coastal Zone
PublicationThe transport of pollutants with flowing waters is one of the most common processes in the natural environment. In general, this process is described by a system of differential equations, including the continuity equation, dynamic equations, pollutant transport equations and equations of state. For the analyzed problem of pollutant migration in wide rivers and the coastal zone, a two-dimensional model is particularly useful because...
-
Near-Field Wireless Sensing of Plastics and Papers Using Frugal Peel-Off Passive Tag
PublicationThis article presents a novel frugal approach of testing plastics and papers using a near-field microwave sensing technique with a peel-off tag. The proposed sensing technique involves two electrical entities: the sensor, which may be regarded as a reader, and a disposable tag. The reader is a modified design of a gap-coupled microstrip line (GCML) sensor, while the passive tag is a standard double-ring complementary split-ring...
-
Destruction of shell structures under the dynamic load on the human skull trauma basis
PublicationThe main aim of this work is to investigate patterns of potential orbital bone fractures due to mechanical injuries. The solution of the main problem is followed by analysis of several testing examples having straight correlation with civil engineering structures, in which materials of wide range of stiffness are applied. To solve the main problem, the three-dimensional finite element method (FEM) model of the orbital region has...
-
On a flexomagnetic behavior of composite structures
PublicationThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
Effective Formula for Impact Damping Ratio for Simulation of Earthquake-induced Structural Pounding
PublicationStructural pounding during earthquakes may cause substantial damage to colliding structures. The phenomenon is numerically studied using different models of collisions. The aim of the present paper is to propose an effective formula for the impact damping ratio, as a parameter of the impact force model used to study different problems of structural pounding under seismic excitations. Its accuracy has been verified by four various...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Water retention curves of sandy soils obtained from direct measurements, particle size distribution, and infiltration experiments
PublicationAccurate information about soil water retention curves (SWRCs) of sands is essential for evaluating groundwater recharge and vulnerability to contamination in many shallow sandy aquifers which are widespread on post glacial areas in Northern Europe and North America. Pedotransfer functions (PTFs) allow to estimate SWRC from basic physical characteristics of soils, such as textural composition. However, in the case of clean sands...