Filters
total: 171
Search results for: ARBITRARY ACCURACY
-
Implementation of high-precision computation capabilities into the open-source dynamic simulation framework YADE
PublicationThis paper deals with the implementation of arbitrary precision calculations into the open-source discrete element framework YADE published under the GPL-2+ free software license. This new capability paves the way for the simulation framework to be used in many new fields such as quantum mechanics. The implementation details and associated gains in the accuracy of the results are discussed. Besides the "standard" double (64 bits)...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublicationThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity
PublicationMagnetosonic periodic perturbations in a uniform and infinite plasma model are considered. Damping due to compressional viscosity, electrical resistivity, and thermal conduction are taken into account, as well as some heating–cooling function, which may destroy the isentropicity of wave perturbations. The wave vector forms arbitrary angle h with the equilibrium straight magnetic field, and all perturbations are functions...
-
Application of hybrid finite-difference mode-matching method to analysis of structures loaded with axially-symmetrical posts
PublicationW artykule przedstawiono nową metodę hybrydową do analizy układów falowodowych zawierających dowolne konfiguracje obiektów osiowo-symetrycznych. Metoda oparta jest na połączeniu metody różnic skończonych, metody dopasowania rodzajów oraz iteracyjnej procedury rozpraszania. W pracy przedstawiono badania zbieżności metody. Uzyskane wyniki numeryczne porównano z wynikami odniesienia. Duża zgodność wyników potwierdziła poprawność opracowanego...
-
An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors
PublicationThis paper presents an isogeometric finite element formulation for nonlinear beams with impenetrability constraints, based on the kinematics of Cosserat rods with unconstrained directors. The beam cross-sectional deformation is represented by director vectors of an arbitrary order. For the frictionless lateral beam-to-beam contact, a surface-to-surface contact algorithm combined with an active set strategy and a penalty method...
-
Acoustic imaging of selected areas of Gdansk Bay with the aid of parametric echosounder and side-scan sonar
PublicationThe article presents and analyses the data recorded during sounding of the Gdansk Bay seabed with the aid of a parametric echosounder and a side-scan sonar. The accuracy of seabed structure examination, as a condition for obtaining valuable results, requires correct configuration of echolocation devices and proper calibration of peripheral devices, such as the survey unit geographical position sensor – GPS, the navigation unit,...
-
Visual TreeCmp : Comprehensive Comparison of Phylogenetic Trees on the Web
Publication1. We present Visual TreeCmp—a package of applications for comparing phylogenetic tree sets. 2. Visual TreeCmp includes a graphical web interface allowing the visualization of compared trees and command line application extended by comparison methods recently proposed in the literature. 3. The phylogenetic tree similarity analysis in Visual TreeCmp can be performed using eighteen metrics, of which 11 are dedicated to rooted trees...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublicationPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Minimization of a ship's magnetic signature under external field conditions using a multi-dipole model
PublicationThe paper addresses the innovative issue of minimizing the ship's magnetic signature under any external field conditions, i.e., for arbitrary values of ambient field modulus and magnetic inclination. Varying values of the external field, depending on the current geographical location, affect only the induced part of ship's magnetization. A practical problem in minimizing the ship signature is separating permanent magnetization...
-
Efficient and robust quadratures for isogeometric analysis: Reduced Gauss and Gauss–Greville rules
PublicationThis work proposes two efficient quadrature rules, reduced Gauss quadrature and Gauss–Greville quadrature, for isogeometric analysis. The rules are constructed to exactly integrate one-dimensional B-spline basis functions of degree p, and continuity class C^{p−k}, where k is the highest order of derivatives appearing in the Galerkin formulation of the problem under consideration. This is the same idea we utilized in Zou et al....
-
Direction of Arrival Estimation Based on Received Signal Strength Using Two-Row Electronically Steerable Parasitic Array Radiator Antenna
PublicationIn this paper, we present a novel approach to direction-of-arrival (DoA) estimation using two-row electronically steerable parasitic array radiator (ESPAR) antenna which has 12 passive elements and allows for elevation and azimuth beam switching using a simple microcontroller, relying solely on received signal strength (RSS) values measured at the antenna output port. To this end, we thoroughly investigate all 18 available 3D antenna...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
An Objective Focussing Measure for Acoustically Obtained Image
PublicationIn scientific literature many parameters of an image sharpness can be defined, that can be used for the evaluation of display energy concentration (EC). This paper proposes a new, simple approach to EC quantitative evaluation in spectrograms, which are used for the analysis and visualization of sonar signals. The presented approach of the global-image EC measure was developed to the evaluation of EC in arbitrary direction (or at...
-
Time versus space trade-offs for randezvous in trees
PublicationTwo identical (anonymous) mobile agents start from arbitrary nodes of an unknown tree and have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. We consider deterministic algorithms for this rendezvous task. The main result of this paper is a tight trade-off between the optimal time of completing rendezvous and the size of memory...
-
Gordon Decomposition of the Magnetizability of a Dirac One-Electron Atom in an Arbitrary Discrete Energy State
PublicationWe present analytical derivation of formulas for diamagnetic and paramagnetic contributions to magnetizabilities of relativistic hydrogenlike atoms being in an arbitrary discrete energy eigenstate.
-
Bistability in a One-Dimensional Model of a Two-Predators-One-Prey Population Dynamics System
PublicationIn this paper, we study a classical two-predators-one-prey model. The classical model described by a system of three ordinary differential equations can be reduced to a one-dimensional bimodalmap. We prove that this map has at most two stable periodic orbits. Besides, we describe the bifurcation structure of the map. Finally, we describe a mechanism that leads to bistable regimes. Taking this mechanism into account, one can easily...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublicationThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
Topological model of aptitude of the measurement circuits of main subassemblies of an internal combustion engine crankshaft-piston assembly
PublicationThe paper presents a topological model allowing to determine the probability of aptitude of the diagnosing system (SDG) individual measuring circuits and also to determine to what degree they influence the assessment of the technical condition of an arbitrary main subassembly of crankshaft-piston assemblies as a diagnosed system (SDN).
-
Collision-free network exploration
PublicationMobile agents start at different nodes of an n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round two agents may occupy the same node. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest time required to reach a configuration in which each agent has visited all nodes and returned to its starting location. In...
-
Visualization of a lifeboat motion during lowering along ship’s side
PublicationThis paper presents description of a computer program for motion visualization of a lifeboat lowered along ship’s side. The program is a post-processor which reads results of numerical calculations of simulated objects’ motions. The data is used to create scene composed of 3D surfaces to visualize mutual spatial positions of a lifeboat, ship’s side and water waving surface. Since the numerical data contain description of a simulation...
-
An Analysis of Scattering from Ferrite Post of Arbitrary Convex Cross Section with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from ferrite post is presented. The post is assumed to be located in closed areas as waveguide junction, or in open area illuminated by a plane wave. The object is of arbitrary convex cross section and the method of analysis is semi-analytical, based on the direct field matching technique.
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublicationIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
An Analysis of Periodic Arrangements of Cylindrical Objects of Arbitrary Convex Cross Sections with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from multilayered frequency selective surfaces is presented. Each surface is composed of periodically arranged cylindrical posts of arbitrary convex cross-section. The method of analysis is based on the direct field matching technique for a single cell, and the transmission matrix method with the lattice sums technique for periodic arrangement of scatterers.
-
The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones
PublicationGiven a graph G, a spanning subgraph H of G and an integer λ>=2, a λ-backbone coloring of G with backbone H is a vertex coloring of G using colors 1, 2, ..., in which the color difference between vertices adjacent in H is greater than or equal to lambda. The backbone coloring problem is to find such a coloring with maximum color that does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree...
-
Bell-Type Inequalities from the Perspective of Non-Newtonian Calculus
PublicationA class of quantum probabilities is reformulated in terms of non-Newtonian calculus and projective arithmetic. The model generalizes spin-1/2 singlet state probabilities discussed in Czachor (Acta Physica Polonica:139 70–83, 2021) to arbitrary spins s. For s → ∞ the formalism reduces to ordinary arithmetic and calculus. Accordingly, the limit “non-Newtonian to Newtonian” becomes analogous to the classical limit of a quantum theory
-
Interval incidence coloring of subcubic graphs
PublicationIn this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is N P-complete, and they asked if χii(G) ≤ 2∆(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with ∆(G) = 3.
-
An Analysis of Cylindrical Posts of Arbitrary Convex Cross Sections Located in Waveguide Junctions with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from cylindrical posts of arbitrary cross section located in waveguide junction is presented. The method of analysis is based on the direct field matching technique. Multimode scattering matrices of every section of waveguide junction are calculated and cascading procedure is utilized to investigate the whole structure. The results are verified by comparing them with those obtained from...
-
Quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi^4 model
PublicationAnalytical form of quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi^4 model is obtained through zeta function regularisation with account of all rest variables of a d-dimensional theory. Qualitative dependence of quantum corrections on parameters of the classical systems is also evaluated for a much broader class of potentials u(x) = b^2 f(bx) + C with b and C as arbitrary real constants
-
Discussion on “Coupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element Method” by L. Monforte, M. Arroyo, J.M. Carbonell, and A. Gens
PublicationAddressed here is the Particle Finite Element Method (PFEM) modelling of undrained CPTu penetration with regard to a reference analytical solution based on the Spherical Cavity Expansion Method (SCEM). Also discussed is the choice of the soil model and its parameters. The effect of cone interface friction on CPTu simulation is analyzed in a series of penetration tests using Arbitrary Lagrangian-Eulerian (ALE) and Updated Lagrangian...
-
Domain Reduction in Hybrid Technique for Electromagnetic Wave Scattering Problems
PublicationThis paper proposes a combination of the field matching technique, finite element method and generalized impedance matrix, the main idea of which is to reduce the computational domain by surrounding a scatterer with the smallest convex shape and applying the field matching technique. This approach can be applied for arbitrary shaped scatterers and types of materials and allows for the reduction of the computational domain. In order...
-
Resonance Frequency Calculation of Spherical Microstrip Structure Using Hybrid Technique
PublicationIn this paper the spherical microstrip structure is considered. The structure is composed of a metallic patch with an arbitrary shape placed on a dielectric coated metallic sphere. In the analysis the hybrid technique is utilized. In this approach the finite-difference technique is applied in a cavity model to determine the current basis functions on the patch. Next, using method of moments, the resonance frequency of the structure...
-
Propagation in the Open Cylindrical Guide of Arbitrary Cross Section With the Use of Field Matching Method
PublicationA simple solution to propagation problem in open waveguides and dielectric fibers of arbitrary convex cross section is presented. The idea of the analysis is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. A complex root tracing algorithm is utilized to find the propagation coefficients of the investigated guides. Different convex...
-
An Analysis of Probe-Fed Rectangular Patch Antennas With Multilayer and Multipatch Configurations on Cylindrical Surfaces
PublicationA multi-patch configuration of probe-fed rectangular microstrip antennas mounted on a cylindrical body, with electrically small radius, with an arbitrary number of substrate and superstrate layers is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. A unified procedure for creating proper matrices for the investigated geometry of the structure is outlined here. Numerical results for...
-
Locating and Identifying Ferromagnetic Objects
PublicationThe new non-iterative method of determining the dipole moment and location is presented in this paper. The algorithm of an object's localization and identification was achieved by using numerical calculations and approximation method. The arbitrary shapes of an object were assumed in the identification algorithm - axially symmetric spheroid (a prolate and an oblate). Several examples of localization and identification of an object's...
-
Locating and Identifying Ferromagnetic Objects
PublicationThe new non-iterative method of determining the dipole moment and location is presented in this paper. The algorithm of an object's localization and identification was achieved by using numerical calculations and approximation method. The arbitrary shapes of an object were assumed in the identification algorithm - axially symmetric spheroid (a prolate and an oblate). Several examples of localization and identification of an object's...
-
Convergence to equilibrium under a random Hamiltonian
PublicationWe analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first...
-
Multiple Solutions to Third-Order Differential Equations with Derivative Dependence and Deviating Arguments
PublicationIn this paper, we give some new results for multiplicity of positive (nonnegative) solutions for third-order differential equations with derivative dependence, deviating arguments and Stieltjes integral boundary conditions. We discuss our problem with advanced argument α and arbitrary β ∈ C([0,1],[0,1]), see problem (2). It means that argument β can change the character on [0,1], so β can be delayed in some set J ⊂ [0,1] and advanced...
-
MAlSim - Mobile Agent Malware Simulator
PublicationOne of the problems related to the simulation of attacks against critical infrastructures is the lack of adequate tools for the simulation of malicious software (malware). Malware attacks are the most frequent in the Internet and they pose a serious threat against critical networked infrastructures. To address this issue we developed Mobile Agent Malware Simulator (MAISim). The framework uses the technology of mobile agents and...
-
Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique
PublicationA hybrid technique was employed for the analysis of the resonance frequency of thin planar and cylindrical microstrip structures with the patches of arbitrary geometry. The proposed technique utilizes a combination of Galerkin’s moment method and a finite-element method (FEM). In this approach, an FEM is adopted to calculate the patch surface current densities, and a method of moments is utilized to calculate the resonance frequencies...
-
Resonance microstrip structure with patch of arbitrary convex geometry with the use of field matching technique
PublicationAn analysis of the resonance frequency problem of planar microstrip structure with patch of arbitrary convex geometry is presented. A full-wave analysis is employed utilizing a combination of Galerkin’s moment method and field matching technique. In this approach, a field matching technique is adopted to calculate the patch surface current densities, and next the method of moments is utilized to calculate resonance frequencies...
-
Stability analysis of a road scarp in the Carpathian Mountains and methods of its protection
PublicationThe purpose of the study was to analyse the stability of a road scarp endangered by a landslide and to consider some measures for its stabilization. The potential landslide could unfavourably alter the shape of the slope, thus a religious sanctuary situated above the slope. The present research has resulted in suggestions of possible protection methods, namely, drainage, soil nailing, installation of piles, supporting the scarp...
-
Scattering and Propagation Analysis for the Multilayered Structures Based on Field Matching Technique
PublicationA semi-analytical method is employed to the analysis of scattering and guiding problems in multilayer dielectric structures. The approach allows to investigate objects with arbitrary convex cross section and is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. For the scattering problems the scattered field in the far zone is calculated...
-
Two-dimensional hydrogen-like atom in a weak magnetic field
PublicationWe consider a non-relativistic two-dimensional (2D) hydrogen-like atom in a weak, static, uniform magnetic field perpendicular to the atomic plane. Within the framework of the Rayleigh-Schr¨odinger perturbation theory, using the Sturmian expansion of the generalized radial Coulomb Green function, we derive explicit analytical expressions for corrections to an arbitrary planar hydrogenic bound-state energy level, up to the fourth...
-
Non-Linear Interaction of Harmonic Waves in a Quasi-Isentropic Flow of Magnetic Gas
PublicationThe diversity of wave modes in the magnetic gas gives rise to a wide variety of nonlinear phenomenaassociated with these modes. We focus on the planar fast and slow magnetosound waves in the geometryof a flow where the wave vector forms an arbitrary angleθwith the equilibrium straight magnetic field.Nonlinear distortions of a modulated signal in the magnetic gas are considered and compared to thatin unmagnetised gas. The case of...
-
Quantum key distribution based on private states: Unconditional security over untrusted channels with zero quantum capacity
PublicationIn this paper, we prove unconditional security for a quantum key distribution (QKD) protocol based on distilling pbits (twisted ebits) from an arbitrary untrusted state that is claimed to contain distillable key. Our main result is that we can verify security using only public communication-via parameter estimation of the given untrusted state. The technique applies even to bound-entangled states, thus extending QKD to the regime...
-
A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints
PublicationWe address a generalization of the classical 1- and 2-processor unit execution time scheduling problem on dedicated machines. In our chromatic model of scheduling machines have non-simultaneous availability times and tasks have arbitrary release times and due dates. Also, the versatility of our approach makes it possible to generalize all known classical criteria of optimality. Under these stipulations we show that the problem...
-
Numerical solutions for large deformation problems in geotechnical engineering
PublicationThe problem of large deformations often occurs in geotechnical engineering. Numerical modeling of such issues is usually complex and tricky. The chosen solution has to implicate soil-soil and soil-structure interactions. In this paper, a review of the most popular numerical methods for large deformation problems is presented. The Coupled Eulerian-Lagrangian (CEL) method, the Arbitrary Lagrangian-Eulerian (ALE) method, the Smoothed...
-
Characterizing the Performance of <span class="sc">xor</span> Games and the Shannon Capacity of Graphs
PublicationIn this Letter we give a set of necessary and sufficient conditions such that quantum players of a two-party xor game cannot perform any better than classical players. With any such game, we associate a graph and examine its zero-error communication capacity. This allows us to specify a broad new class of graphs for which the Shannon capacity can be calculated. The conditions also enable the parametrization of new families of games...
-
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
PublicationWe construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice \Gamma ⊂ R^d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain R^d / \Gamma. We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the...