Filters
total: 111
Search results for: HEAT PIPE
-
Additive Manufacturing as a Solution to Challenges Associated with Heat Pipe Production
PublicationThe aim of this review is to present the recent developments in heat pipe production, which respond to the current technical problems related to the wide implementation of this technology. A novel approach in HP manufacturing is to utilise hi-tech additive manufacturing techniques where the most complicated geometries are fabricated layer-by-layer directly from a digital file. This technology might be a solution to various challenges...
-
Investigation of the influence of capilary effect on operation of the loop heat pipe
PublicationIn the paper presented are studies on the inestigation of the capillary forces effect inducted in the porous structure of a loop heat pipe using water and ethanol ad test fluids. The potential application of such effects is for example in the evaporator of the domestic micro-CHP unit, where the reduction of pumping power could be obtained. Preliminary analysis of the results indicates water as having the best potential for developing...
-
The In-House Method of Manufacturing a Low-Cost Heat Pipe with Specified Thermophysical Properties and Geometry
PublicationVarious types of heat pipes are available to purchase off the shelf, from various manufacturers, but most of them have strictly defined geometry and technical parameters. However, when there is a need to use a heat pipe (HP) with an unusual size and shape or working conditions other than the standard ones, it becomes very costly to order them from manufacturers, especially in small quantities, and only a few producers are willing...
-
Recent Advances in Loop Heat Pipes with Flat Evaporator
PublicationThe focus of this review is to present the current advances in Loop Heat Pipes (LHP) with flat evaporators, which address the current challenges to the wide implementation of the technology. A recent advance in LHP is the design of flat-shaped evaporators, which is better suited to the geometry of discretely mounted electronics components (microprocessors) and therefore negate the need for an additional transfer surface (saddle)...
-
Beeswax And Palmitic Acid Utilization With Heat Pipes For Electronics Cooling
PublicationThis paper presents an experimental study of heat pipes supported by phase change materials (PCMs) coated at their adiabatic sections in application for electronics cooling. The PCMs investigated in this research were palmitic acid and beeswax, the latter being considered as a more cost-effective alternative. The study focused on three powers: 20W, 25W, and 30W. The experimental results revealed that the incorporation of palmitic...
-
The Influence of Loop Heat Pipe Evaporator Porous Structure Parameters and Charge on Its Effectiveness for Ethanol and Water as Working Fluids
PublicationAbstract: This paper presents the results of experiments carried out on a specially designed experimental rig designed for the study of capillary pressure generated in the Loop Heat Pipe (LHP) evaporator. The commercially available porous structure made of sintered stainless steel constitutes the wick. Three different geometries of the porous wicks were tested, featuring the pore radius of 1, 3 and 7 um. Ethanol and water as two...
-
Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review
PublicationThermal control systems have been introduced as an important part of electronic devices, enabling thermal management of their electronic components. Loop heat pipe (LHP) is a passive two-phase heat transfer device with significant potential for numerous applications, such as aerospace applications, high-power LEDs, and solar central receivers. Its advantages are high heat transfer capability, low thermal resistance, long-distance...
-
Experimental investigation on heat pipes supported by soy wax and lauric acid for electronics cooling
PublicationThis paper presents an experimental study of heat pipes for electronics cooling that were supported by energy storage materials (i.e. phase change materials - PCMs) coated at the adiabatic section. The PCMs utilized included two materials, namely lauric acid and soy wax, the latter being considered as a more cost-effective alternative. The study focused on three different powers: 20 W, 25 W, and 30 W. Both heating, cooling, and...
-
Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges
PublicationThe potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device...
-
Experimental Investigation of the Thermal Performance of a Wickless Heat Pipe Operating with Different Fluids: Water, Ethanol, and SES36. Analysis of Influences of Instability Processes at Working Operation Parameters
PublicationIn this study, the influences of different parameters on performance of a wickless heat pipe have been presented. Experiments have been carried out for an input power range from 50 W to 300 W, constant cooling water mass flow rate of 0.01 kg/s, and constant temperature at the inlet to condenser of 10 C. Three working fluids have been tested: water, ethanol, and SES36 (1,1,1,3,3-Pentafluorobutane) with different filling ratios (0.32,...
-
Heat Dissipation from the Power Cable in the Casing Pipe
PublicationThe current carrying capacity of a power cable determines its ability to carry a specific current and is related to the efficiency of dissipation of heat generated in the cable laid in a specific environment. The studies were conducted in order to determine how the characteristics of the medium around the cable affected its temperature, and thus the ability of the cable to transmit electricity. The experimentation in the lab and...
-
Experimental investigation of heat transfer enhancement in straight and U-bend double-pipe heat exchanger with wire insert
PublicationIn this paper, the possibility of heat transfer enhancement in the U-bend exchanger was presented. Experimental research has been carried out for four individual heat exchanger constructions i.e. plain tube in tube, turbulized tube in tube, plain U-bend and U-bend with turbulator. Also, heat transfer experiments for various boundary conditions were performed to obtain reference values. In case of U-bend exchanger with and without...
-
Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe
PublicationThe paper deals with the important challenges in terms of electricity transmission by means of underground cable lines. The power cable’s performance is characterized by an ampacity that represents its maximum electric current-carrying capacity. The ampacity of power cables depends on their ability to diffuse the heat generated by the current flow into the environment. In the performed research, the analysis of the efficiency of...
-
The Laboratory Stand for the Evaluation of Heat Dissipation from the Power Cable in a Casing Pipe
PublicationThe current carrying capacity of a power cable determines its efficiency, which depends on its capability to dissipate heat produced inside the cable, as a result of current flow, into the surrounding. The studies were conducted to determine how the characteristics of the medium around the cable affected its temperature and, as a result, its ability to transport electricity. The experimentation in the lab and real measurements...
-
Thermal Design of Double Pipe Heat Exchanger Used as an Oil Cooler in Ships: A Comparative Case Study
Publication -
Synergistic effects of a swirl generator and MXene/ water nanofluids used in a heat exchanger pipe of a negative CO2 emission gas power plant
Publicationfocus on optimizing heat exchangers contributes to improved temperature control mechanisms, ensuring the sustainable operation of innovative power plants working towards negative CO2 emissions. In the realm of oxy-combustion within Negative CO2 Emission Power Plants (nCO2PP), the temperature of combustion products surpasses 3000 (K). Addressing this challenge, the imperative arises to reduce these elevated temperatures to a manageable...
-
Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems
PublicationCompact heat exchangers have more and more applications in many areas, including the HVAC, food and petrochemical industry. This paper describes the development of heat exchanger technology for waste heat recovery (WHR) from a range of processes. Case-study testing shows that the proposed heat exchanger can successfully enhance heat transfer and recover waste heat in a range of applications making them economically, environmentally and...
-
Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings
PublicationEffective and environmentally responsive techniques of energy management in residential buildings are desirable for the resulting reduction of energy costs and consumption. In this paper, an improved and efficient technique of energy management in pipe-embedded wall heating/cooling systems, called the Thermal Barrier, is described. Specifically, the Thermal Barrier is a technique focused on the management and control of heat...
-
Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings
PublicationEffective and environmentally responsive techniques of energy management in residential buildings are desirable for the resulting reduction of energy costs and consumption. In this paper, an improved and efficient technique of energy management in pipe-embedded wall heating/cooling systems, called the Thermal Barrier, is described. Specifically, the Thermal Barrier is a technique focused on the management and control of heat supply...
-
Effect of the inclination angle of the condenser on the heat transfer coefficient value – experimental study
PublicationWhen considering problem of the condensation of the refrigerant in a flow inside channel, one needs to pay attention to the shape of its cross-section, the hydraulic diameter, the channel length as well as the orientation of the channel axis in space (horizontal, vertical, inclined). This paper presents an experimental study concerning the effect of the inclination angle of the condenser with a single coil pipe on the heat transfer...
-
Numerical single-phase modeling of turbulent flow and heat transfer of nanofluids
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (6 000< Re < 12 000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with published experimental data.
-
Decision support system for design of long distance heat transportation system
PublicationDistrict Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). The paper proposes a Decision Support System (DSS) for optimized selection of design and operating parameters of a long distance Heat Transportation System (HTS). The method allows for evaluation of feasibility and effectiveness...
-
EFFECT OF WORKING FLUID SELECTION ON THERMAL PERFORMANCE OF HEAT EXCHANGER FILLED BY THE POROUS MATERIAL
PublicationThermal management of electronics semiconductor technologies that are located i.e. in a novel marine power plants or computer server rooms become very important issue for designers of such systems. Motivation and need for research in development of novel cooling strategies for modern electronics is of paramount importance. Heat exchangers filled by the porous material are a novel research topic in current heat pipe science. The...
-
Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness
PublicationThe shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil,centrifugal force is acting on the moving fluid due to the curvature of thetube results in the development. It has been long recognized that the...
-
Multicriteria Optimization Approach to Design and Operation of District Heating Supply System over its Life Cycle
PublicationDistrict Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation...
-
Heat transfer enhancement of modular thermal energy storage unit for reversible heat pump cooperation
PublicationThe following article presents experimental comparison research on a hexagonal shelland-tube latent thermal energy storage (TES). Such shape of a shell was deliberately chosen instead of a cylindrical one due to its high modularity and with intent for future applications in automobiles (EV and PHEV) air conditioning systems (HVAC). Two geometries of helical coils, acting as tubes, were studied in this article. One was a simple...
-
Experimental investigation on straight and u-bend double tube heat exchanger with active and passive enhancement methods
PublicationAuthors in this work want to demonstrate the possibility to increase the heat transfer efficiency by using simple wire coil inserts to create turbulent flow in the boundary layer as well as air blowing into the annulus of the pipe. In the study, Wilson plot approach was applied in order to estimate heat transfer coefficients for all heat exchanger (HX) configurations. The study focuses on experimental values of heat transfer coefficient...
-
Rurka ciepła z pętlą obiegową jako urządzenie do odzysku ciepła
PublicationW pracy przedstawiono możliwości odzysku ciepła za pomocą rurki ciepła z pętlą obiegową (ang. loop heat pipe)
-
Numerical Study of Turbulent Flow and Heat Transfer of Nanofluids in Pipes
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (Reynolds number between 6000 and 12000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid...
-
Numerical study of turbulent flow and heat transfer of nanofluids in pipes
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (6 000 < Re < 12 000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data of Vajjha et al. [1]. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid...
-
The concept of capillary forces supported evaporator for application to domestic ORC unit
PublicationIn the paper presented are studies on the investigation of the capillary forces effect inducted in the porous structure of a loop heat pipe. The potential application of such heat exchanger is for example an evaporator of the domestic micro CHP unit. Preliminary analysis of the results indicates water as having the best potential, however taking into account all issues it can be said that the best effect is obtained using ethanol.
-
Experimental and Computational Fluid Dynamics Studies on Straight and U-Bend Double Tube Heat Exchangers with Active and Passive Enhancement Methods
PublicationIn this work, the authors wanted to demonstrate the possibility to increase the heat transfer efficiency by using simple wire coil inserts to create turbulent flow in the boundary layer as well as air blowing into the annulus of the pipe. Experimental investigations were carried out for four heat exchanger constructions, i.e., plain double tube, turbulized double tube, plain U-bend double tube, U-tube with turbulator, plain double...
-
Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems
PublicationCogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility...
-
Nuclear Co-generation: The Analysis of Technical Capabilities and Cost Estimates
PublicationThis paper presents a concept of the parallel connection of a nuclear power plant fitted to provide heat for district heating application, with the CHP and heat plants existing in the supply region, in this case with the heating systems of Wejherowo and Gdynia. Presented variant proposes to add heat to a nuclear power plant’s total output by supplying heat exchangers with the steam from bleeders of low pressure (LP) turbine stage...
-
Energy conversion in systems-contained laser irradiated metallic nanoparticles - comparison of results from analytical solutions and numerical methods
PublicationThis work introduces the theoretical method of metallic nanoparticles’ (NPs’) heat and mass transfer where the particles are coated on a surface (base), together with considering the case wherein nanoparticles move freely in a pipe. In order to simulate the heat transfer, energy and radiative transfer equations are adjusted to the considered issue. NPs’ properties are determined following the nanofluidic theories, whereas absorption...
-
The influence of stainless steels microstructure evolution on the mechanical properties of pressure installation elements
PublicationIn this paper results of FEM analysis performed for pipe and 90o elbow, made of super duplex stainless steel, after precipitation of sigma phase (),were presented. Heat treatment conditions simulate accidental overheating that can occur in nuclear installations after cooling circulation fails. For initial and modified microstructure tensile test was performed and numerical description of work hardening curves was done. Verification...
-
The influence of stainless steels microstructure evolution on the mechanical properties of pressure installation elements
PublicationIn this paper results of FEM analysis performed for pipe and 90o elbow, made of super duplex stainless steel, after precipitation of sigma phase (s), were presented. Heat treatment conditions simulate accidental overheating that can occur in nuclear installations after cooling circulation fails. For initial and modified microstructure tensile test was performed and numerical description of work hardening curves was done. Verification...
-
Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat
PublicationThis paper presents the methodology of techno-economic analysis for a nuclear unit operating in partial cogeneration mode and its application for the case study: a nuclear power plant planned in Poland. The research objectives were: to propose EPR, AP1000 and ESBWR nuclear condensing-extraction turbine systems modifications required for operation in cogeneration, to determine optimal heat production and heat transport line (HTL)...
-
Turbulence model evaluation for numerical modelling of turbulent flow and heat transfer of nanofluids
PublicationIn this work, Nusselt number and friction factor are calculated numerically for turbulent pipe flow (Reynolds number between 6000 and 12000) with constant heat flux boundary condition using nanofluids. The nanofluid is modelled with the single-phase approach and the simulation results are compared with experimental data. Ethylene glycol and water, 60:40 EG/W mass ratio, as base fluid and SiO2 nanoparticles are used as nanofluid...
-
A numerical analysis of the thermal effects in the jet impingement stagnation zone
PublicationMost of the flows occurring in the engineering systems are turbulent and their accurate numerical analysis is still challenging, especially when combined with the heat transfer. One of the methods of heat transfer enhancement is utilization of the turbulent impinging jets, which were recently applied also in the heat exchangers. Their positive impact on the heat transfer performance was proven, but many questions related to its...
-
Weldability of pipe grade polyethylenes as realized from thermal and mechanical properties assessments
PublicationSince polyethylene (PE) has been widely accepted for the production of high-pressure fluid conveying pipelines, studies devoted to weldability of PE connections were always of major importance. In this study, two industrial PE grades designed for pipe production, namely PE80 and PE100, were injection molded, cut, and then welded as PE100-PE100, PE100-PE80, and PE80-PE80. The heat-welded joints were assessed by differential scanning...
-
The effect of cable duct diameter on the ampacity of high-voltage power cables
PublicationThe ampacity of power cables depends, among others, on the conditions of heat dissipation from the cable to the environment. Cables are usually laid directly in the ground, but in some sections, they may be placed in ducts, which adversely affects the ampacity of the cable line. The paper presents heat transfer phenomena for cables installed in pipe-type ducts filled with air. The effect of cable duct diameter on this ampacity...
-
Experimental and comparative study on the two-phase pressure drop of air-water mixture in U-bend and straight pipe annuli
PublicationIn this paper, the experimental and theoretical analysis of pressure drop in singlephase and two phase-flow were presented for straight and U-bend smooth tube annulus and tube annulus with wire coil insert. Experiments for various boundary conditions were performed. In case of U-tube and straight tube with and without turbulator, tests were made for the water-water and air-water systems. The study covered a wide measuring range,...
-
Thermal and Hydrodynamic Phenomena in the Stagnation Zone — Impact of the Inlet Turbulence Characteristics on the Numerical Analyses
PublicationOne of the methods of heat transfer enhancement is utilization of the turbulent impinging jets, which were recently applied, for example, in the heat exchangers. Their positive impact on the heat transfer performance was proven, but many questions related to the origin of this impact are still unanswered. In general, the wall-jet interaction and the near-wall turbulence are supposed to be its main reason, but their accurate numerical...
-
Koncepcja stanowiska oraz badania możliwości bezpompowego przetłaczania czynnika w rurce ciepła z pętlą obiegową. Część I - Wstęp-charakterystyka obiegu LHP
PublicationBezpompowa cyrkulacja czynnika roboczego występuje w rurkach ciepła z pętlą obiegową (LHP, ang. Loop Heat Pipe). Rurki ciepła oparte na pętli, to urządzenia dwufazowe służące do transportu ciepła, wykorzystujące grawitacyjne i kapilarne siły do wzbudzania obiegu czynnika roboczego. LHP stało się bardzo obiecującym urządzeniem, możliwym do wykorzystania w różnego rodzaju zaawansowanych urządzeniach pracujących naziemnie. W pierwszej...
-
The FEM analysis of pressure installation elements after simulated accidental overheating
PublicationThe paper presents innovative analysis focused on the safety aspects of existing pressure installation operation after overheating accidents. Results presented here can be applied in decision-making process concerning further operation of existing pressure installation after cooling system failure. In this paper the results of FEM analysis performed for a straight pipe and 90 degrees elbow, made of super duplex stainless steel,...
-
Badania połączeń spawanych rurociągu wody pitnej we Włocławku, ang. Welding joints tests in drinking water pipeline.
PublicationCelem badań opisanych w pracy było określenie przyczyn korozji powstałej w strefie wpływu ciepła (SWC) w obwodowych połączeniach spawanych w rurociągu wody pitnej. Materiałem, z którego wykonano rurociąg to stal 304/304L. W obszarze złącza spawanego stwierdzono wżery inicjowane od niezgodności geometrycznych, gdzie mogły gromadzić się osady zwiększające udział chlorków bezpośrednio przy powierzchni rury, promujące tym procesy korozyjne....
-
Sound intensity distribution around organ pipe
PublicationThe aim of the paper was to compare acoustic field around the open and stopped organ pipes. The wooden organ pipe was located in the anechoic chamber and activated with a constant air flow, produced by an external air-compressor. Thus, long-term steady state response was possible to obtain. Multichannel acoustic vector sensor was used to measure the sound intensity distribution of radiated acoustic energy. Measurements have been...
-
Experimental studies on the impact of changing the pipe material on the propagation of the pressure wave during water hammer
PublicationAim of the paper is to present the results studying the water hammer phenomenon in pipes made of different materials, and to show the impact of changing the type of material of the pipe on the velocity of the pressure wave during the transient flow in the pipes. In terms of research material and methods, pipes made of galvanized steel and high-density polyethylene were tested. Measurements were made using strain gauges with a high...
-
Reservoir Influence on Pressure Wave Propagation in Steel Pipes
PublicationThe relation between the length of steel pipe and the pressure wave period in the system, reservoir-pipe-valve, is discussed. Experiments carried out for the short steel pipes showed that in such a system, the pressure wave celerity estimated using the measured wave cycles systematically increases with the increase of the pipe length. The observed differences can exceed even 90 m=s. As the pressure wave traveling in the pipe with...