Filters
total: 578
Search results for: GEOMETRY OPTIMIZATION
-
Impact of rotor geometry optimization on the off-design ORC turbine performance
PublicationThe paper describes the method of CFD based Nelder-Mead optimization of a 10 kW single-stage axial turbine operating in an ORC system working on R7100. The total-to-static isentropic efficiency is defined as an objective function. Multi-point linear regression is carried out to determine the significance of the objective function arguments and to pick up the set of particular variables and characteristic quantities (e.g. flow angles)...
-
Geometry optimization of steroid sulfatase inhibitors - the influence on the free binding energy with STS
PublicationIn the paper we review the application of two techniques (molecular mechanics and quantum mechanics) to study the influence of geometry optimization of the steroid sulfatase inhibitors on the values of descriptors coded their chemical structure and their free binding energy with the STS protein. We selected 22 STS-inhibitors and compared their structures optimized with MM+, PM7 and DFT B3LYP/6–31++G* approaches considering separately...
-
Optimization of the geometry of the crankshaft for an internal combustion engine with heat regeneration
Publication -
Selection of circuit geometry for miniaturized microwave components based on concurrent optimization of performance and layout area
PublicationThe paper presents a framework for automated EM-driven circuit geometry selection of miniaturized microwave components. Selection of a particular layout is based directly on miniaturization rates achieved for a set of candidate circuit geometries. Size reduction of the considered structures is obtained by replacing their main building blocks (i.e., conventional transmission lines) with slow-wave composite cells and meander lines....
-
Optimization of Self-Organized TiO2 Nanotube Geometry on Ti and Ti Alloys Using Fuzzy Logic Reasoning
PublicationThe geometry of self-organized TiO2 nanotubes, obtained by electrochemicalanodization, has been determined by using fuzzy reasoning approach. The efficiency of TiO2nanotubular layer in biomedical applications depends on geometry and available surface area ofnanotubes, which can be determined by their diameter and length. The structure of nanotubesdepends on processing parameters of electrochemical anodization, like applied potential,anodization...
-
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
On geometry parameterization for simulation-driven design closure of antenna structures
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in antenna design, especially final tuning of geometry parameters. From the reliability standpoint, the recommended realization of EM-driven design is through rigorous numerical optimization. It is a challenging endeavor with the major issues related to the high computational cost of the process, but also the necessity of handling several objectives and constraints...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
Optimalization of TiO2 nanotube geometry using fuzzy reasoning approach
PublicationThe geometry of TiO2 nanotube layer on titanium, obtained by electrochemical anodization, has been determined by using fuzzy reasoning approach. A proposed method showed the possibility of nanotube array architecture optimization by choosing an appropriate anodization condition. A fuzzy logic controller (FLC) was utilized using Matlab Software.
-
Small Antenna Design Using Surrogate-Based Optimization
PublicationIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
A structure and design optimization of novel compact microscrip dual-band rat-race coupler with enhanced bandwidth
PublicationIn the letter, a topology of a novel compact wideband dual-band rat-race coupler has been presented along with its computationally efficient design optimization procedure. Reduction of the circuit size has been achieved by meandering transmission lines of the conventional circuit. At the same time, the number of independent geometry parameters has been increased so as to secure sufficient flexibility of the circuit, necessary in...
-
Multi-objective optimization for assessment of topological modification in UWB antennas
PublicationThis paper addresses an issue of systematic and rigorous assessment of effects of topological modifications on the performance of compact UWB antennas. Application of fast surrogate-assisted multi-objective optimization procedures allows us for obtaining, in a practically acceptable timeframe, a set of designs representing the best possible trade-offs between conflicting objectives (here, antenna size minimization and reduction...
-
Complex multidisciplinary optimization of turbine blading systems
PublicationThe paper describes the methods and results of direct optimization of turbine blading systems using a software package Opti_turb. The final shape of the blading is obtained from minimizing the objective function, which is the total energy loss of the stage, including the leaving energy. The current values of the objective function are found from 3D RANS computations (from a code FlowER) of geometries changed during the process...
-
Inverse heat transfer problem solution of sounding rocket using moving window optimization
PublicationAn Inverse Heat Transfer Problem is solved for a sounding rocket module given its geometry and measured temperature profile. The solution is obtained via moving window optimization, a technique for solving inverse dynamics. An analysis is performed to modify the method to avoid oscillatory behavior of the resulting heat flux profile. The method parameters are tuned in relation to characteristic phases of the flight. Results are...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublicationCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Fast multi-criterial statistical analysis and design optimization of compact microwave couplers
Publication—A rapid statistical analysis and yield estimation of compact microwave couplers involving multiple performance parameters has been presented. The analysis is realized using a fast surrogate model representing appropriate characteristic points of the coupler response. Because of less nonlinear dependence of the characteristic points on the structure geometry (compared to the original response, i.e., S-parameters vs. frequency),...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Experimental and numerical investigation on shell and coil storage unit with biodegradable PCM for modular thermal battery applications
PublicationThermal energy storage (TES) in automotive applications is currently growing in importance. TES can visibly reduce primary energy consumptions, decrease CO2 emission, and improve thermal comfort in electric as well as hybrid vehicles. However, to meet the new ambitious target (15% reduction of CO2 emissions in the new cars until 2025) it is required to use plug-in electric vehicles. For this reason, this paper focuses on the optimization...
-
Nested Kriging Surrogates for Rapid Multi-Objective Optimization of Compact Microwave Components
PublicationA procedure for rapid EM-based multi-objective optimization of compact microwave components is presented. Our methodology employs a recently developed nested kriging modelling to identify the search space region containing the Pareto-optimal designs, and to construct a fast surrogate model. The latter permits determination of the initial Pareto set, further refined using a separate surrogate-assisted process. As an illustration,...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
Size-Reduction-Oriented Design of Compact CPW-Fed UWB Monopole Antenna
PublicationA structure and design optimization of compact CPW-fed UWB monopole antenna is presented. Explicit size reduction through constrained numerical optimization of all relevant geometry parameters of the structure leads to a very small footprint of only 321 mm2. At the same time, a very wide antenna bandwidth is achieved from 3.1 GHz to 17 GHz.
-
OPTIMIZATION OF THE LAST STAGE OF GAS-STEAM TURBINE USING A HYBRID METHOD
PublicationThis paper relates to the CFD calculation of a new turbine type which is in the phase of theoretical analysis, because the working fluid is a mixture of steam and gas generated in wet combustion chamber. At first, this article concentrates on a possibility of streamlining the flow efficiency of a last stage of axial turbine working on gas-steam mixture using a hybrid of the particle swarm optimization algorithm with the Nelder-Mead...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Statistical analysis and robust design of circularly polarized antennas using sequential approximate optimization
PublicationIn the paper, reliable yield estimation and tolerance-aware design optimization of circular polarization (CP) antennas is discussed. We exploit auxiliary kriging interpolation models established in the vicinity of the nominal design in order to speed up the process of statistical analysis of the antenna structure at hand. Sequential approximate optimization is then applied to carry out robust design of the antenna, here, oriented...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublicationDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
A framework for accelerated optimization of antennas using design database and initial parameter set estimation
PublicationThe purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated. Design/methodology/approach The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities....
-
On Design Optimization of Miniaturized Microscrip Dual-Band Rat-Race Coupler with Enhanced Bandwidth
PublicationIn the paper, a novel topology of a miniaturized wideband dual-band rat-race coupler has been presented. Small size of the circuit has been obtained by meandering transmission lines of the conventional circuit. At the same time, the number of independent geometry parameters has been increased in order to secure sufficient circuit flexibility in the context of its design optimization for dual-band operation. Optimum dimensions of...
-
The Way One Defines Specification Matters: On the Performance Criteria for Efficient Antenna Optimization in Aggregated Bi-Objective Setups
PublicationDesign of antenna structures for real-world applications is a challenging task that often involves addressing multiple design requirements at a time. Popular solution approaches to this class of problems include utilization of composite objectives. Although configuration of such functions has a significant effect on the cost and performance of the optimization, their specific structure is normally determined based on engineering...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
PublicationMeticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublicationElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Reduced-Cost Design Optimization of High-Frequency Structures Using Adaptive Jacobian Updates
PublicationElectromagnetic (EM) analysis is the primary tool utilized in the design of high-frequency structures. In vast majority of cases, simpler models (e.g., equivalent networks or analytical ones) are either not available or lack accuracy: they can only be used to yield initial designs that need to be further tuned. Consequently, EM-driven adjustment of geometry and/or material parameters of microwave and antenna components is a necessary...
-
Example of Using Particle Swarm Optimization Algorithm with Nelder–Mead Method for Flow Improvement in Axial Last Stage of Gas–Steam Turbine
PublicationThis article focuses principally on the comparison baseline and the optimized flow efficiency of the final stage of an axial turbine operating on a gas–steam mixture by applying a hybrid Nelder– Mead and the particle swarm optimization method. Optimization algorithms are combined with CFD calculations to determine the flowpaths and thermodynamic parameters. The working fluid in this study is a mixture of steam and gas produced...
-
Novel structure and design of compact UWB slot antenna
PublicationIn this paper, a novel structure of a compact UWB slot antenna is presented along with a simulation-driven design optimization algorithm for adjusting geometry parameters of the device. Our primary objective is to obtain small footprint of the structure while maintaining its acceptable electrical performance. It is achieved by introducing sufficiently large number of geometry degrees of freedom, including increased number of parameterized...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
On Rapid Design Optimization and Calibration of Microwave Sensors Based on Equivalent Complementary Resonators for High Sensitivity and Low Fabrication Tolerance
PublicationThis paper presents the design, optimization, and calibration of multivariable resonators for mi-crowave dielectric sensors. An optimization technique for circular complementary split ring reso-nator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufac-tured using a standard photolithographic technique...