Search results for: NAVIER-STOKES EQUATION
-
Theophylline Therapy for Near-Fatal Cheyne–Stokes Respiration: A Case Report
Publication -
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublicationThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Open Research DataThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublicationIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublicationIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Considerations about the applicability of the Reynolds equation for analyzing high-speed near field levitation phenomena
Publicationequation for analyzing near field levitation (NFL) phenomena. Two separate approaches were developed, experimentally verified, and applied to meet the research objective. One was based on the Reynolds equation and the other was based on general conservation equations for fluid flow solved using computational fluid dynamic (CFD). Comparing the calculation results revealed that, for certain operating conditions, differences in the...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublicationThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublicationThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublicationIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
Equation of state for Eu-doped SrSi2O2N2
Publication -
Approximated boundary conditions of the equation of difussion
PublicationProblem podejmowany w pracy dotyczy warunku brzegowego w równaniach fizyki matematycznej, opisujących procesy migracji zanieczyszczeń. W szczególności skoncentrowano się na badaniu wpływu na rozwiązanie przyjmowanych w rozwiązaniach numerycznych aproksymacji ''odpływowego'' warunku brzegowego w jednowymiarowym równaniu adwekcji - dyspersji. Rozważania teoretyczne przeprowadzono w oparciu o rozwiązania analityczne oraz numeryczne...
-
The application of Monod equation to denitrification kinetics description in the moving bed biofilm reactor (MBBR)
PublicationIn this paper, the kinetic constants Vmax and KCOD occurring in the Monod equation, which describe the denitrification process in the moving bed, are determined. For this purpose, a laboratory moving bed biofilm reactor (MBBR) was used. The filling of the reactor consisted of EvU Perl carriers. The experiment was carried out with an excess of nitrate, and denitrification rate was dependent on the concentration of external organic...
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublicationResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
Comparison of sunshine duration measurements from Campbell-Stokes sunshine recorder and CSD1 sensor
Publication -
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublicationIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublicationWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublicationIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublicationStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....
-
Aerated grit chambers hydraulic design equation.
PublicationW pracy zaproponowano metodę wymiarowania piaskowników napowietrzanych. Jej głównymi elementami są wyznaczanie niezbędnej intensywności aeracji ścieków, pola ich prędkości oraz trajektorii cząstek zawiesiny.
-
Quantum corections to SG equation solutions and applications
Publication -
Journal of Applied Structural Equation Modeling
Journals -
Structural Equation Modeling: A Multidisciplinary Journal
Journals -
The interpretation of the parameters of the equation used for the extrapolation of apparent molar volumes of the non-electrolyte (solutes) to the infinite dilution
PublicationThe paper discusses how to interpret the parameters of the basic equation used for the extrapolation of the apparent molar volume of the solute to infinite dilution. The common misunderstandings and oversimplifications have been pointed out. We present the alternative ways of the data interpretation that can be used to eliminate these obvious but frequent mistakes.
-
Some new soliton solutions to the higher dimensional Burger–Huxley and Shallow water waves equation with couple of integration architectonic
PublicationIn this paper, we retrieve some traveling wave, periodic solutions, bell shaped, rational, kink and anti-kink type and Jacobi elliptic functions of Burger’s equation and Shallow water wave equation with the aid of various integration schemes like improved -expansion scheme and Jacobi elliptic function method respectively. We also present our solutions graphically in various dimensions.
-
Determination of dryout localization using a five-equation model of annular flow for boiling in minichannels
PublicationDetailed studies have suggested that the critical heat flux in the form of dryout in minichannels occurs when the combined effects of entrainment, deposition, and evaporation of the film make the film flow rate go gradually and smoothly to zero. Most approaches so far used the mass balance equation for the liquid film with appropriate formulations for the rate of deposition and entrainment respectively. It must be acknowledged...
-
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublicationThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0,1].
Open Research DataThe presented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation.
-
Comparative analysis of numerical with optical soliton solutions of stochastic Gross–Pitaevskii equation in dispersive media
PublicationThis article deals with the stochastic Gross–Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation...
-
Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy–Weisbach equation and the issue of friction factor
PublicationIn this article, we consider the modelling of stationary incompressible and isothermal one-dimensional fluid flow through a long pipeline. The approximation of the average pressure in the developed model by the arithmetic mean of inlet and outlet pressures leads to the known empirical Darcy–Weisbach equation. Most importantly, we also present another improved approach that is more accurate because the average pressure is estimated...
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublicationA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
-
Reduction restrictions of Darboux and Laplace transformations for the Goursat equation
PublicationZredukowane przekształcenia Darboux i Laplace`a dla równania Goursata zastosowane do rozwiązywania problemów nieliniowych i geometrycznych. Podaje się nowe rozwiązania równań KdV-MKdV w przestrzeni 2+1.
-
Magdalena Brzozowska-Woś dr hab. inż.
PeopleMagdalena Brzozowska-Woś is a graduate of the Faculty of Management and Economics of the Gdańsk University of Technology (specialization: management systems). She is also a graduate of Postgraduate Studies in Advertising (Faculty of Management and Economics, GUT) and Postgraduate Studies in Public Relations (SWPS University of Humanities and Social Sciences). In the years 2000-2003, she cooperated with Panorama Internet sp. z o....
-
Theophylline Therapy for Cheyne-Stokes Respiration During Sleep in a 41-Year-Old Man With Refractory Arterial Hypertension
Publication -
Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0, γ^(1/p)].
Open Research DataPresented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation. The generalized Burgers–Huxley equation is a diffusive partial differential equation with nonlinear advection and diffusion. The boundary problem for this equation possesses...
-
Electronically Excited States in Solution via a Smooth Dielectric Model Combined with Equation-of-Motion Coupled Cluster Theory
PublicationWe present a method for computing excitation energies for molecules in solvent, based on the combination of a minimal parameter implicit solvent model and the equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this method, the solvent medium is represented by a smoothly varying dielectric function, constructed directly from the quantum mechanical electronic density using only two tunable parameters. The...
-
Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation
PublicationIn the study, the averaging technique of diffusion coefficients in the two-dimensional nonlinear diffusive wave equation applied to the floodplain inundation is presented. As a method of solution, the splitting technique and the modified finite element method with linear shape functions are used. On the stage of spatial integration, it is often assumed that diffusion coefficient is constant over element and equal to its average...
-
Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization a` la Mickens of the generalized Burgers–Huxley equation.
PublicationDeparting from a generalized Burgers–Huxley partial differential equation, we provide a Mickens-type, nonlinear, finite-difference discretization of this model. The continuous system is a nonlinear regime for which the existence of travelling-wave solutions has been established previously in the literature. We prove that the method proposed also preserves many of the relevant characteristics of these solutions, such as the positivity,...
-
Liquid water. Analytical equation of state and acoustic parameters evaluation.
PublicationRównanie stanu dla ciekłej wody zaproponowane przez Jefferya - Austina zastosowano do obliczeń prędkości dźwięku oraz parametru nieliniowości B/A. Parametry akustyczne są porównywane z danymi doświadczalnymi.
-
Mesh-free approach to Helmholtz equation on radial basis functions
PublicationMetoda radialnych funkcji bazowych (RBF) jest coraz czesciej stosowana przy rozwiazywaniu rownan rozniczkowych czastkowych oraz zagadnien wlasnych. W szczegolnosci znalazla ona zastosowanie w problemach elektrodynamiki obliczeniowej. W publikacji zastosowano RBF do rozwiazania rownania Helmholtza. Wprowadzono nowy algorytm - adaptacyjny do wyznaczania centrow interpolacyjnych. Przedstawiona metode zastosowano do wyznaczenia rozkladow...
-
Analysis of the KZK equation solution for fixed pressure distributions at the piston
PublicationPraca dotyczy zagadnienia oddziaływania fal o dużej amplitudzie, generowanych przez przetwornik kołowy o gaussowskim rozkładzie ciśnienia. Model matematyczny zbudowano w oparciu o równania KZK. Do rozwiązania zagadnienia zastosowano metodę różnic skończonych. Badano zmiany ciśnienia fal różnych częstotliwości w obrębie wiązki akustycznej. Wyniki obliczeń numerycznych porównano z odpowiednimi rozwiązaniami analitycznymi
-
Design Equation for Stirring Fluid by a Stream Pump in a Circulating Tank
PublicationA circulating tank is a very useful theoretical scheme for many fluid-flow objects in several branches of engineering. The motion of the fluid in such objects can be induced in different ways. A stream pump provides an especially interesting possibility; however, the quantitative description of such devices shows some shortcomings. Such a device is analogous to a jet pump, thus has similar advantages (simplicity of construction,...
-
CFD COUPLING OF VOF MODEL WITH ARRHENIUS EQUATION FOR ANALYSIS OF LASER-INDUCED THERMAL DEACTIVATION OF E. COLI
PublicationUnderstanding bacterial deactivation at the micro-scale, particularly with E. coli, is crucial for advancing microbiology and has promising applications in biomedical research. In this research contribution, we investigate the thermal inactivation of E. coli bacteria using gold nanoparticles irradiated by a green 1-W laser within a microfluidic chamber. The microfluidic device comprises a fluidic chamber filled with a thin film...
-
Use of structural equation modeling in quantitative research in the field of management and economics: A bibliometric analysis in the systematic literature review
PublicationPURPOSE: This paper aims to provide a comprehensive review of scholarly research focusing on using quantitative methods and particularly structural equation modeling (SEM) in management and economics studies, as well as provide a bibliometric agenda including the time horizon of individual publications, the highest citation rate, geographic and industry areas, methodological context, and keywords. METHODOLOGY: A systematic literature...
-
The use of Preston equation to determine material removal during lap-grinding with electroplated CBN tools
PublicationGrinding executed in a lapping configuration is an alternative finishing process benefiting from both grinding and free-abrasive machining, while minimizing the heat effect impact. Electroplated tools can be effectively used in different abrasive processes, including high-speed grinding, however, the assessment of machining performance over time is a key factor in their correct use to achieve satisfactory technological results....
-
Thresholds of Lasing as Solutions of Characteristic Equation for a VCSEL-type Layered Structure
Publication -
Mesh-free approach to Helmholtz equation based on radial basis functions.
PublicationW artykule zastosowano metodę radialnych funkcji bazowych do rozwiązania równania Helmholthza oraz zaproponowano nowy (adaptacyjny) algorytm wyznaczania centrów interpolacyjnych. W oparciu o prezentowany schemat wyznaczono długości fal odcięcia dla różnych kształtów przekrojów poprzecznych falowodów cylindrycznych.
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublicationThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...