Search results for: COMPUTATIONAL METHODS
-
Design centering of compact microwave components using response features and trust regions
PublicationFabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mitigating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Alt-hough important, robust (or tolerance-aware)...
-
Global EM-Driven Optimization of Multi-Band Antennas Using Knowledge-Based Inverse Response-Feature Surrogates
PublicationElectromagnetic simulation tools have been playing an increasing role in the design of contemporary antenna structures. The employment of electromagnetic analysis ensures reliability of evaluating antenna characteristics but also incurs considerable computational expenses whenever massive simulations are involved (e.g., parametric optimization, uncertainty quantification). This high cost is the most serious bottleneck of simulation-driven...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Karolina Lademann mgr
PeopleCurriculum vitae
-
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublicationBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
Towards sugar-derived polyamides as environmentally friendly materials
PublicationAs part of our ongoing study investigating isohexide-based polyamides, we have synthesized isosorbide(bis(propan-1-amine)) (DAPIS) and studied its reactivity in the polymerization towards fully biobased polyamides. Polycondensation of nylon salts with various contributions of DAPIS afforded a family of homo- and copolyamides, which were characterized using complementary spectroscopic techniques. The chemical structure of the materials...
-
Structural, functional, and stability change predictions in human telomerase upon specific point mutations,
PublicationOverexpression of telomerase is one of the hallmarks of human cancer. Telomerase is important for maintaining the integrity of the ends of chromosomes, which are called telomeres. A growing number of human disease syndromes are associated with organ failure caused by mutations in telomerase (hTERT or hTR). Mutations in telomerase lead to telomere shortening by decreasing the stability of the telomerase complex, reducing its accumulation,...
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublicationA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
The retrofitting of ships by applying retractable bow hydrofoils: a case study
PublicationIncreasing environmental requirements and a relatively long ship life of 30 years mean more attention is needed to retrofit existing ships. One possibility is using hydrofoils to reduce the ship’s resistance and improve comfort and safety in rough sea conditions. This study investigates the influence of retractable bow hydrofoils on the seakeeping performance and operational conditions of a selected case study vessel (V-shaped...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublicationPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
A. Computational analysis by molecular docking of thirty alkaloid compounds from medicinal plants as potent inhibitors of SARS-CoV-2 main protease(2020). Focused on analysis of the Medicinal plants that have potential therapeutic ability against COVID-19.
Publication -
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Low-Cost Quasi-Global Optimization of Expensive Electromagnetic Simulation Models by Inverse Surrogates and Response Features
PublicationConceptual design of contemporary high-frequency structures is typically followed by a careful tuning of their parameters, predominantly the geometry ones. The process aims at improving the relevant performance figures, and may be quite expensive. The reason is that conventional design methods, e.g., based on analytical or equivalent network models, often only yield rough initial designs. This is especially the case for miniaturized...
-
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublicationNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
How do sterols determine the antufungal activitiy of amphotericin B? Free energy of binding between the drug and its membrane targets.
PublicationAmphotericin B (AmB) is a well-known polyene antibiotic used to treat systemic fungal infections. It is commonly accepted that the presence of sterols in the membrane is essential for the AmB biological activity, that is, for the formation of transmembrane ion channels. The selective toxicity of AmB for fungal cells is attributed to the fact that it is more potent against fungal cell membranes containing ergosterol than against...
-
Discovering Rule-Based Learning Systems for the Purpose of Music Analysis
PublicationMusic analysis and processing aims at understanding information retrieved from music (Music Information Retrieval). For the purpose of music data mining, machine learning (ML) methods or statistical approach are employed. Their primary task is recognition of musical instrument sounds, music genre or emotion contained in music, identification of audio, assessment of audio content, etc. In terms of computational approach, music databases...
-
Variable-fidelity response feature surrogates for accelerated statistical analysis and yield estimation of compact microwave components
PublicationAccounting for manufacturing tolerances is an essential part of a reliable microwave design process. Yet, quantification of geometry and/or material parameter uncertainties is challenging at the level of full-wave electromagnetic (EM) simulation models. This is due to inherently high cost of EM analysis and massive simulations necessary to conduct the statistical analysis. Here, a low-cost and accurate yield estimation procedure...
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublicationMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Explicit Size-Reduction-Oriented Design of a Compact Microstrip Rat-Race Coupler Using Surrogate-Based Optimization Methods
PublicationIn this paper, an explicit size reduction of a compact rat-race coupler implemented in a microstrip technology is considered. The coupler circuit features a simple topology with a densely arranged layout that exploits a combination of high- and low-impedance transmission line sections. All relevant dimensions of the structure are simultaneously optimized in order to explicitly reduce the coupler size while maintaining equal power...
-
User-assisted methodology targeted for building structure interpretable QSPR models for boosting CO2 capture with ionic liquids
PublicationTask-specific ionic liquid (IL) is an emerging class of compounds that may be environmentally friendly. Properly selected, these compounds may be green alternative to amine solutions and can replace them in post-combustion carbon dioxide (CO2) capture processes on an industrial scale. However, owing to the vast diversity of ions and their possible combinations, laboratory research is time consuming and expensive. Therefore, computational...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublicationThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Fast Design Closure of Compact Microwave Components by Means of Feature-Based Metamodels
PublicationPrecise tuning of geometry parameters is an important consideration in the design of modern microwave passive components. It is mandatory due to limitations of theoretical design methods unable to quantify certain phenomena that are important for the operation and performance of the devices (e.g., strong cross-coupling effects in miniaturized layouts). Consequently, the initial designs obtained using analytical or equivalent network...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
Application of Msplit method for filtering airborne laser scanning data sets to estimate digital terrain models
PublicationALS point cloud filtering involves the separation of observations representing the physical terrain surface from those representing terrain details. A digital terrain model (DTM) is created from a subset of points representing the ground surface. The accuracy of the generated DTM is influenced by several factors, including the survey method used, the accuracy of the source data, the applied DTM generation algorithm, and the survey...
-
Application of the Msplitmethod for filtering airborne laser scanning data-sets to estimate digital terrain models
PublicationALS point cloud filtering involves the separation of observations representing the physical terrain surface from those representing terrain details. A digital terrain model (DTM) is created from a subset of points representing the ground surface. The accuracy of the generated DTM is influenced by several factors, including the survey method used, the accuracy of the source data, the applied DTM generation algorithm, and the survey...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture
PublicationReduction of greenhouse gases emissions is a key challenge for the power generation industry, requiring the implementation of new designs and methods of electricity generation. This article presents a design solution for a novel thermodynamic cycle with two new devices—namely, a wet combustion chamber and a spray-ejector condenser. In the proposed cycle, high temperature occurs in the combustion chamber because of fuel combustion...
-
Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures
PublicationThis paper describes a new computational method for determining the optimum number of actuators to design the optimal and economic cross-sectional area of pin-jointed assemblies based on the conventional force method. The most active members are selected to be prestressed to redistribute stress in the whole structure, resulting in regulating the internal force of bars that face high stress. Reducing stress in critical members allows...
-
Surrogate modeling of impedance matching transformers by means of variable‐fidelity electromagnetic simulations and nested cokriging
PublicationAccurate performance evaluation of microwave components can be carried out using full‐wave electromagnetic (EM) simulation tools, routinely employed for circuit verification but also in the design process itself. Unfortunately, the computational cost of EM‐driven design may be high. This is especially pertinent to tasks entailing considerable number of simulations (eg, parametric optimization, statistical analysis). A possible...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Divulging the anti-acetylcholinesterase activity of Colletotrichum lentis strain KU1 extract as sustainable AChE active site inhibitors
PublicationAlzheimer’s disease (AD), also called senile dementia is a neurodegenerative disease seen commonly in the elderly and is characterised by the formation of β-amyloid plaques and neurofbrillary tangles (NFT). Though a complete understanding of the disease is lacking, recent studies showed the role of the enzyme acetylcholinesterase (AChE) in pathogenesis. Finding new lead compounds from natural sources has always been a quest for...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
QUEUE II Winter School
e-Learning CoursesQUEUE = QUantum and molEcUlEsIt's a school organized for all those young scientists and students who wish to learn on the basics and advances in quantum ideas and methodologies and its practical applications for living problems in chemistry, electrochemistry and material sciences. The students will learn on how to perform the quantum-chemical computations, because we have planned a big block of laboratories, aside from lectures,...
-
QUEUE I Summer School
e-Learning CoursesQUEUE = QUantum and molEcUlEsIt's a school organized for all those young scientists and students who wish to learn on the basics and advances in quantum ideas and methodologies and its practical applications for living problems in chemistry, electrochemistry and material sciences. The students will learn on how to perform the quantum-chemical computations, because we have planned a big block of laboratories, aside from lectures,...
-
QUEUE III Summer School
e-Learning CoursesQUEUE = QUantum and molEcUlEsIt's a school organized for all those young scientists and students who wish to learn on the basics and advances in quantum ideas and methodologies and its practical applications for living problems in chemistry, electrochemistry and material sciences. The students will learn on how to perform the quantum-chemical computations, because we have planned a big block of laboratories, aside from lectures,...
-
Sampling-based novel heterogeneous multi-layer stacking ensemble method for telecom customer churn prediction
PublicationIn recent times, customer churn has become one of the most significant issues in business-oriented sectors with telecommunication being no exception. Maintaining current customers is particularly valuable due to the high degree of rivalry among telecommunication companies and the costs of acquiring new ones. The early prediction of churned customers may help telecommunication companies to identify the causes of churn and design...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Influence of windsurfing fin stiffness distribution on the lift-drag characteristics
PublicationThis article addresses the problem of determining the hydromechanical loads generated by flexible hydrofoils. The research was done on the example of the composite windsurfing fin for the RS:X monotype class. Despite the assumption of fins identity, everyday practice showed that variations of mechanical properties occur and strongly affect their performance. Therefore, we decided to study the differences between the windsurfing...
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
PublicationMeticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent...
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublicationIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...