Filters
total: 9493
-
Catalog
- Publications 6258 available results
- Journals 105 available results
- Conferences 91 available results
- People 138 available results
- Inventions 1 available results
- Projects 10 available results
- Laboratories 1 available results
- e-Learning Courses 211 available results
- Events 24 available results
- Open Research Data 2654 available results
displaying 1000 best results Help
Search results for: DATA-DRIVEN MODELS
-
Application of mechanistic and data-driven models for nitrogen removal in wastewater treatment systems
PublicationIn this dissertation, the application of mechanistic and data-driven models in nitrogen removal systems including nitrification and deammonification processes was evaluated. In particular, the influential parameters on the activity of the Nitrospira activity were assessed using response surface methodology (RSM). Various long-term biomass washout experiments were operated in two parallel sequencing batch reactor (SBR) with a different...
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublicationKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Data-driven models for fault detection using kernel PCA: A water distribution system case study
Publication -
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Fundamentals of Data-Driven Surrogate Modeling
PublicationThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
Dis/Trust and data-driven technologies
PublicationThis concept paper contextualises, defines, and systematises the concepts of trust and distrust (and their interrelations), providing a critical review of existing literature so as to identify gaps, disjuncture, and continuities in the use of these concepts across the social sciences and in the context of the consolidation of the digital society. Firstly, the development of the concept of trust is explored by looking at its use...
-
On the interspike-intervals of periodically-driven integrate-and-fire models
PublicationWe analyze properties of the firing map, which iterations give information about consecutive spikes, for periodically driven linear integrate-and-fire models. By considering locally integrable (thus in general not continuous) input functions, we generalize some results of other authors. In particular, we prove theorems concerning continuous dependence of the firing map on the input in suitable function spaces. Using mathematical...
-
Multilevel pharmacokinetics-driven modeling of metabolomics data
Publication -
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Derivation of Executable Test Models From Embedded System Models using Model Driven Architecture Artefacts - Automotive Domain
PublicationThe approach towards system engineering compliant to Model-Driven Architecture (MDA) implies an increased need for research on the automation of the model-based test generation. This applies especially to embedded real-time system development where safety critical requirements must be met by a system. The following paper presents a methodology to derive basic Simulink test models from Simulink system models so as to execute them...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublicationFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Fast EM-driven optimization using variable-fidelity EM models and adjoint sensitivities
PublicationA robust and computationally efficient technique for microwave design optimization is presented. Our approach exploits variable-fidelity electromagnetic (EM) simulation models and adjoint sensitivities. The low-fidelity EM model correction is realized by means of space mapping (SM). In the optimization process, the SM parameters are optimized together with the design itself, which allows us to keep the number...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Firing map for periodically and almost-periodically driven integrate-and-fire models: a dynamical systems approach
PublicationWe consider the Leaky Integrate-and-Fire and Perfect Integrator models of neuron’s dynamics with the input function being periodic and almost-periodic (in the sense of Stepanov). In particular we analyze properties and dynamics of the so-called firing map, which iterations give timings of consecutive spikes of a neuron. In case of a periodic input function we provide a detailed description of the sequence of interspike-intervals,...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublicationRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Towards High-Value Datasets Determination for Data-Driven Development: A Systematic Literature Review
PublicationOpen government data (OGD) is seen as a political and socio-economic phenomenon that promises to promote civic engagement and stimulate public sector innovations in various areas of public life. To bring the expected benefits, data must be reused and transformed into value-added products or services. This, in turn, sets another precondition for data that are expected to not only be available and comply with open data principles,...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publication -
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Optimization of river network representation data models for web-based systems
Publication -
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublicationData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
Comparison of Traffic Flow Models with Real Traffic Data Based on a Quantitative Assessment
PublicationThe fundamental relationship of traffic flow and bivariate relations between speed and flow, speed and density, and flow and density are of great importance in transportation engineering. Fundamental relationship models may be applied to assess and forecast traffic conditions at uninterrupted traffic flow facilities. The objective of the article was to analyze and compare existing models of the fundamental relationship. To that...
-
Application of data driven methods in diagnostic of selected process faults of nuclear power plant steam turbine
PublicationArticle presents a comparison of process anomaly detection in nuclear power plant steam turbine using combination of data driven methods. Three types of faults are considered: water hammering, fouling and thermocouple fault. As a virtual plant a nonlinear, dynamic, mathe- matical steam turbine model is used. Two approaches for fault detection using one class and two class classiers are tested and compared.
-
Identification of High-Value Dataset determinants: is there a silver bullet for efficient sustainability-oriented data-driven development?
PublicationOpen Government Data (OGD) are seen as one of the trends that has the potential to benefit the economy, improve the quality, efficiency, and transparency of public administration, and change the lives of citizens, and the society as a whole facilitating efficient sustainability-oriented data-driven services. However, the quick achievement of these benefits is closely related to the “value” of the OGD, i.e., how useful, and reusable...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
O-43 Data-driven selection of active iEEG channels during verbal memory task performance
Publication -
Influence of input data on airflow network accuracy in residential buildings with natural wind - and stack - driven ventilation.
PublicationW artykule omówiono wpływ danych wejściowych na dokładność modelu przepływu sieciowego powietrza w budynkach mieszkalnych z naturalną i kominową wentylacją. Zastosowano połączony model AFN-BES. Wyniki numeryczne omówiono dla 8 różnych przypadków z różnymi danymi ciśnienia wiatru. Wyniki pokazały, że ogromny wpływ danych wejściowych dotyczących ciśnienia wiatru na wyniki numeryczne.
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
SCRAMBLE’N’GAMBLE: a tool for fast and facile generation of random data for statistical evaluation of QSAR models
Publication -
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Which Curve Fits Best: Fitting ROC Curve Models to Empirical Credit-Scoring Data
PublicationIn the practice of credit-risk management, the models for receiver operating characteristic (ROC) curves are helpful in describing the shape of an ROC curve, estimating the discriminatory power of a scorecard, and generating ROC curves without underlying data. The primary purpose of this study is to review the ROC curve models proposed in the literature, primarily in biostatistics, and to fit them to actual credit-scoring ROC data...
-
Data set generation at novel test-rig for validation of numerical models for modeling granular flows
PublicationSignificant effort has been exerted on developing fast and reliable numerical models for modeling particulate flow; this is challenging owing to the complexity of such flows. To achieve this, reliable and high-quality experimental data are required for model development and validation. This study presents the design of a novel test-rig that allows the visualization and measurement of particle flow patterns during the collision...
-
Application of the Msplitmethod for filtering airborne laser scanning data-sets to estimate digital terrain models
PublicationALS point cloud filtering involves the separation of observations representing the physical terrain surface from those representing terrain details. A digital terrain model (DTM) is created from a subset of points representing the ground surface. The accuracy of the generated DTM is influenced by several factors, including the survey method used, the accuracy of the source data, the applied DTM generation algorithm, and the survey...
-
Application of hidden Markov models to eye tracking data analysis of visual quality inspection operations
Publication -
Application of Msplit method for filtering airborne laser scanning data sets to estimate digital terrain models
PublicationALS point cloud filtering involves the separation of observations representing the physical terrain surface from those representing terrain details. A digital terrain model (DTM) is created from a subset of points representing the ground surface. The accuracy of the generated DTM is influenced by several factors, including the survey method used, the accuracy of the source data, the applied DTM generation algorithm, and the survey...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublicationIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care
Publication -
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublicationHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Towards More Realistic Probabilistic Models for Data Structures: The External Path Length in Tries under the Markov Model
PublicationTries are among the most versatile and widely used data structures on words. They are pertinent to the (internal) structure of (stored) words and several splitting procedures used in diverse contexts ranging from document taxonomy to IP addresses lookup, from data compression (i.e., Lempel- Ziv'77 scheme) to dynamic hashing, from partial-match queries to speech recognition, from leader election algorithms to distributed hashing...
-
Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?
PublicationDuring the last decade, there has been a growing interest in understanding food's digestive fate in order to strengthen the possible effects of food on human health. Ideally, food digestion should be studied in vivo on humans but this is not always ethically and financially possible. Therefore, simple in vitro digestion models mimicking the gastrointestinal tract have been proposed as alternatives to in vivo experiments. Thus,...
-
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publication