Filters
total: 52
Search results for: HAMILTONIAN SYSTEM
-
Clarke duality for Hamiltonian systems with nonstandard growth
PublicationWe consider the existence of periodic solutions to Hamiltonian systems with growth conditions involving G-function. We introduce the notion of symplectic G-function and provide relation for the growth of Hamiltonian in terms of certain constant CG associated to symplectic G-function G. We discuss an optimality of this constant for some special cases. We also provide applications to the Φ-laplacian type systems.
-
Almost homoclinic solutions for the second order Hamiltonian systems
PublicationW niniejszej pracy badam istnienie rozwiązań prawie homoklinicznych (almost homoclinic) dla układu Hamiltona rzędu drugiego (układu Newtona): ü(t) + V_{u}(t,u) = f(t), gdzie t є R, u є R^{n}, V(t,u) = -K(t,u) + W(t,u), K,W: R x R^{n} → R są klasy C^{1}, K spełnia warunek ''pinching'', W_{u}(t,u)=o(|u|), gdy |u| → 0 jednostajnie względem t, f: R → R^{n} jest funkcją ciągłą, niezerową i odpowiednio małą w L^{2}(R,R^{n}). Przy tych...
-
Heteroclinic solutions for a class of the second order Hamiltonian systems
PublicationW pracy dowodzi się istnienia rozwiązań heteroklicznicznych dla pewnej klasy równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
-
Homoclinic solutions for a class of the second order Hamiltonian systems
PublicationW niniejszej pracy badamy istnienie orbit homoklinicznych dlaukładu Hamiltonowskiego drugiego rzędu: q^{..} + V_{q}(t,q) = f(t), gdzie V z iloczynu kartezjańskiego R x R^{n} do R jest postaciV(t,q) = -K(t,q) + W(t,q). Zakładamy, ze V jest T-okresowe ze względuna zmienną t, K spełnia tzw. ''pinching'' warunek, W jest superliniowew nieskończoności, a norma f w L^{2} jest wystarczająco mała.Orbitę homokliniczną takiego układu znajdujemy...
-
The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems
PublicationWe define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This G-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the G-equivariant spectral flow...
-
A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
PublicationIn this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on...
-
Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
PublicationWe consider a conservative second order Hamiltonian system \ddot{q}+ ∇V(q)=0 in R3 with a potential V having a global maximum at the origin and a line l ∩ {0} = ∅ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
-
Almost homoclinics for nonautonomous second order Hamiltonian systems by a variational approach
PublicationW artykule badamy problem istnienia rozwiązań prawie homoklinicznych dla nieautonomicznych układów Hamiltona w R^n z potencjałem V(t,x) postaci -1/2(L(t)x,x)+W(t,x) oraz zaburzeniem f(t) (ang. forcing term) z L^2. Zakładamy, że L jest funkcją ciągłą z prostej w zbiór macierzy kwadratowych nxn taką, że macierze L(t) są symetryczne i dodatnio określone jednostajnie względem zmiennej t. Potencjał W(t,x) jest klasy C^1 i nadkwadratowy...
-
Two almost homoclinic solutions for second-order perturbed Hamiltonian systems
PublicationW niniejszym artykule badamy problem istnienia rozwiązań prawie homoklinicznych (rozwiązań znikających w nieskończonościach) dla układów Hamiltonowskich drugiego rzędu (układów Newtonowskich) z zaburzeniem. Nasz wynik jest uogólnieniem twierdzenia Rabinowitza-Tanaki o istnieniu rozwiązania homoklinicznego dla układów bez zaburzenia [Math. Z. 206 (1991) 473-499]. O zaburzeniu zakładamy, że jest dostatecznie małe w przestrzeni funkcji...
-
Homoclinic orbits for a class of singular second order Hamiltonian systems in R3
PublicationW niniejszym artykule rozważamy autonomiczny układ Hamiltonowski w 3-wymiarowej przestrzeni euklidesowej, z potencjałem osiągającym maksimum globalne właściwe równe zero w początku układu współrzędnych i mającym za zbiór punktów osobliwych prostą, która nie przechodzi przez początek układu. Przy założeniu, że potencjał spełnia pewien warunek zwartości w nieskończoności i warunek Gordona w otoczeniu prostej punktów osobliwych, stosując...
-
The shadowing chain lemma for singular Hamiltonian systems involving strong forces
PublicationW niniejszym artykule rozważamy autonomiczny układ Hamiltonowski na płaszczyźnie z potencjałem, który ma punkt osobliwy (studnię nieskończonej głębokości) i maksimum globalne właściwe równe zero przyjmowane w dwóch różnych punktach płaszczyzny. Przy założeniu, że w otoczeniu punktu osobliwego potencjał spełnia warunek Gordona(gradient tego potencjału w otoczeniu punktu osobliwego jest tzw. silną siłą, ang. a strong force) dowodzimy...
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublicationWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
Two families of infinitely many homoclinics for singular strong force Hamiltonian systems
PublicationWe are concerned with a planar autonomous Hamiltonian system with a potential possessing a single well of infinite depth at a point X and a unique strict global maximum 0 at a point A. Under a strong force condition around the singularity X, via minimization of an action integral and using a shadowing chain lemma together with simple geometrical arguments, we prove the existence of infinitely many geometrically distinct homoclinic...
-
Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential
PublicationW niniejszej pracy udowodniliśmy istnienie nietrywialnego rozwiązania homoklinicznego dla autonomicznych układów Hamiltona drugiego rzędu z nadkwadratowym potencjałem. Orbitę homokliniczną otrzymaliśmy jako słabą granicę ciągu punktów prawie krytycznych, stosując zasadę minimaks do odpowiedniego funkcjonału akcji oraz prosty argument typu ''concentration-compactness''.
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublicationIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in R^2
PublicationW niniejszej pracy badamy autonomiczne układy Hamiltona na płaszczyźnie z potencjałem, który ma punkt osobliwy x, globalne minimum równe zero osiągane w punktach a i b różnych od x oraz spełnia warunek typu Gordona w otoczeniu punktu osobliwego. Wykorzystując metody wariacyjne i pojęcie rotacji krzywej wykazaliśmy, że istnieją co najmniej dwa rozwiązania, które omijają punkt osobliwy i łączą {a,b} z {a,b}.
-
Convergence to equilibrium under a random Hamiltonian
PublicationWe analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first...
-
Conley type index and hamiltonian inclusions
PublicationOpisano definicję i własności indeksu dla zbiorów niezmienniczych wielowartościowego układu dynamicznego w nieskończenie-wymiarowej przestrzeni Hilberta. Podano nowe przykłady zastosowań do twierdzeń o istnieniu nietrywialnych rozwiązań okresowych układów hamiltonowskichz prawą stroną niegładką.
-
Conley type index applied to Hamiltonian inclusions
PublicationPodano dowód istnienia nietrywialnych rozwiązań okresowych dla inkluzji Hamiltonowskich, z potencjałem lokalnie Lipschitzowskim, okresowym, uogólniając klasyczne twierdzenie Ammana- Zehndera. Użyto techniki z teorii indeksu Conley'a dla wielowartościowych potoków w przestrzeni Hilberta.
-
Homoclinic solutions for nonautonomous second order Hamiltonian
PublicationW pracy dowodzi się istnienia rozwiązań homoklinicznych dla pewnych typów równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
-
Termodynamics of quantum information systems - Hamiltonian description.
PublicationPrzy użyciu podejścia hamiltonowskiego wyprowadzono wzór na pracę dla układów kwantowych zanurzonych w ciepłym otoczeniu.
-
An effective Hamiltonian for sulfur adsorption at Au(100) surface
Publication -
Effective one-band Hamiltonian for the copper-oxygen plane in the superconducting copper oxides
Publication -
The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications
PublicationWe show that the Hamiltonian action satisfies the Palais-Smale condition over a “mixed regular- ity” space of loops in cotangent bundles, namely the space of loops with regularity H^s, s ∈ (1/2, 1), in the baseand H^{1−s} in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
-
Very accurate time propagation of coupled Schrödinger equations for femto- and attosecond physics and chemistry, with C++ source code
PublicationIn this article, I present a very fast and high-precision (up to 33 decimal places) C++ implementation of the semi-global time propagation algorithm for a system of coupled Schrödinger equations with a time-dependent Hamiltonian. It can be used to describe time-dependent processes in molecular systems after excitation by femto- and attosecond laser pulses. It also works with an arbitrary user supplied Hamiltonian and can be used...
-
Ergodicity and model quality in template-restrained canonical and temperature/Hamiltonian replica exchange coarse-grained molecular dynamics simulations of proteins
Publication -
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
PublicationWe address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N−1 (Heisenberg scaling) in terms of the number...
-
General solution of quantum mechanical equations of motion with time-dependent Hamiltonians: A Lie algebraic approach
PublicationThe unitary operators U(t), describing the quantum time evolution of systems with a time-dependent Hamiltonian, can be constructed in an explicit manner using the method of time-dependent invariants. We clarify the role of Lie-algebraic techniques in this context and elaborate the theory for SU(2) and SU(1,1). In these cases we give explicit formulae for obtaining general solutions from special ones. We show that the constructions...
-
Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment
PublicationThis work performs a novel quasi three-dimensional (3D) bending analysis for a moderately thick functionally graded material (FGM) made of nanoceramics and metal powders, in presence of porosities due to some incorrect manufacturing processes. Such porosities can appear within the plate in two forms, namely, even and uneven distributions. The modeled system assumes a polymer matrix where both shear and transverse factors coexist....
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublicationThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field
PublicationWe present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression...
-
Subharmonic solutions for a class of Lagrangian systems
PublicationWe prove that second order Hamiltonian systems with a potential of class C1, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [P. H. Rabinowitz, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38]. Indeed, we weaken...
-
Full CI ground state potential energy curves and one-electron relativistic corrections for hydrogen molecule in various basis sets
Open Research DataThis dataset consists of Full CI ground state Born-Oppenheimer potential energy curves and one-electron relativistic corrections for hydrogen dimer. Nonrelativistic energies, as well as one electron relativistic corrections (treated perturbatively with help of the Cowan-Griffin Hamiltonian) are presented for internuclear distances between 0.8 and 10...
-
Multi-state multi-reference Møller-Plesset second-order perturbation theory for molecular calculations
PublicationThis work presents multi‐state multi‐reference Møller–Plesset second‐order perturbation theory as a variant of multi‐reference perturbation theory to treat electron correlation in molecules. An effective Hamiltonian is constructed from the first‐order wave operator to treat several strongly interacting electronic states simultaneously. The wave operator is obtained by solving the generalized Bloch equation within the first‐order...
-
Mutually polarizable QM/MM model with in situ optimized localized basis functions
PublicationWe extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with ONETEP linear-scaling density functional theory and the classical subsystem – with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully...
-
The Arnold conjecture in $ \mathbb C\mathbb P^n $ and the Conley index
Publicationn this paper we give an alternative, purely Conley index based proof of the Arnold conjecture in CP^n asserting that a Hamiltonian diffeomorphism of CP^n endowed with the Fubini-Study metric has at least (n+1) fixed points.
-
Evidence for SrHo2O4 and SrDy2O4 as model J1- J2 zigzag chain materials
PublicationNeutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site-dependent anisotropic single-ion magnetism in both materials, and diffraction measurements show the presence of strong one-dimensional spin correlations.Our measurements indicate that competing interactions of the zigzag chain, combinedwith...
-
The cohomological span of LS-Conley index
PublicationIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
The Maslov index and the spectral flow—revisited
PublicationWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Larmor diamagnetism and Van Vleck paramagnetism in relativistic quantumtheory: the Gordon decomposition approach
PublicationWe consider a charged Dirac particle bound in a scalar potential perturbed by a classical magnetic field derivable from a vector potential A(r). Using a procedure based on the Gordon decomposition of a field-induced current, we identify diamagnetic and paramagnetic contributions to the second-order perturbationtheory correction to the particle's energy. In contradiction to earlier findings, based on the sum-over-states approach,...
-
Calculation of electron scattering lengths on Ar, Kr, Xe, Rn and Og atoms
PublicationFocusing on the noble gases, we calculate the scattering potential using the Dirac-Coulomb Hamiltonian supplemented with a model polarization potential. We determine the scattering lengths using two methods, namely phase shifts for very small scattering energies and the shape of the wave function for zero scattering energy. We compare our theoretical electron scattering length results on Ar, Kr and Xe atoms with existing experimental...
-
Homoclinics for singular strong force Lagrangian systems in R^N
PublicationWe will be concerned with the existence of homoclinics for second order Hamiltonian systems in R^N (N>2) given by Hamiltonians of the form H(t,q,p)=Φ(p)+V(t,q), where Φ is a G-function in the sense of Trudinger, V is C^2-smooth, periodic in the time variable, has a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin. Under a strong force type condition aroud the singular point ξ, we prove...
-
On a comparison principle and the uniqueness of spectral flow
PublicationThe spectral flow is a well-known quantity in spectral theory that measures the variation of spectra about 0 along paths of selfadjoint Fredholm operators. The aim of this work is twofold. Firstly, we consider homotopy invariance properties of the spectral flow and establish a simple formula which comprises its classical homotopy invariance and yields a comparison theorem for the spectral flow under compact perturbations. We apply...
-
Two kinds of oxygen vacancies in lithium titaniate doped with copper as detected by EPR
PublicationLithium titanate (Li1+xTi2-xO4) doped with Cu2+ ions was synthesized by sol-gel processing method. The structure and morphology are characterized by X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). Spin Hamiltonian parameters describing Zeeman and hyperfine interaction for 63Cu2+ ions were obtained from EPR spectra simulations. The spectra...
-
A coarse‐grained approach to NMR ‐data‐assisted modeling of protein structures
PublicationThe ESCASA algorithm for analytical estimation of proton positions from coarse-grained geometry developed in our recent work has been implemented in modeling protein structures with the highly coarse-grained UNRES model of polypeptide chains (two sites per residue) and nuclear magnetic resonance (NMR) data. A penalty function with the shape of intersecting gorges was applied to treat ambiguous distance restraints, which automatically...
-
Pt-rich intermetallic APt8P2 (A = Ca and La)
PublicationThe combination of experimental and theoretical investigation of two new Pt-rich intermetallic compounds: APt8P2 (A = Ca and La) is presented, including solid-state synthesis, crystal structure determination, physical properties characterization and chemical bonding analysis. APt8P2 was obtained through the high-temperature pellet synthesis. According to both single crystal and powder X-ray diffraction results, APt8P2 crystallize...
-
Numerical modeling of quantum dynamical processes
PublicationIn this dissertation I present a high-precision (15, 18 or 33 decimal places) C++ implementation of quantum dynamics time propagation algorithms for both time-independent and time-dependent Hamiltonian with an inhomogeneous source term. Moreover I present an extension of both algorithms for time propagation to handle arbitrary number of coupled electronic levels. I have performed a careful validation of these implementations comparing...
-
Crystal and electronic structures of Ni(II) silanethiolates containing flexible diamine ligands
PublicationFive nickel(II) complexes containing aliphatic diamines and tri-tert-butoxysilanethiolate ligand have been synthesized for the purpose of studying their structural, spectral (IR, UV–Vis, HF EPR) and thermal properties. Complexes (1)–(5) have been prepared in high yield by reactions of [Ni{SSi(OtBu)3}2(NH3)(H2O)] with 1.3-propanediamine (L1), 1,6-hexanediamine (L2), or 1,7-heptanediamine (L3). The X-ray structures were determined...
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublicationThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...