Filters
total: 77
Search results for: PRIMITIVE CANCER CELLULAR STAGES
-
Chemical Aspects of Biological Activity of Isothiocyanates and Indoles, the Products of Glucosinolate Decomposition
PublicationThere is growing evidence that cancer chemoprevention employing natural, bioactive compounds may halt or at least slow down the different stages of carcinogenesis. A particularly advantageous effect is attributed to derivatives of sulfur-organic phytochemicals, such as glucosinolates (GLs) synthesized mainly in Brassicaceae plant family. GLs are hydrolysed enzymatically to bioactive isothiocyanates (ITC) and indoles, which exhibit strong...
-
Quantum Dots as a Good Carriers of Unsymmetrical Bisacridines for Modulating Cellular Uptake and the Biological Response in Lung and Colon Cancer Cells
PublicationNanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD–UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry...
-
The effects of RNA editing in cancer tissue at different stages in carcinogenesis
Publication -
Cellular Effects of Selected Unsymmetrical Bisacridines on the Multicellular Tumor Spheroids of HCT116 Colon and A549 Lung Cancer Cells in Comparison to Monolayer Cultures
PublicationMulticellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), which are responsible for cancer progression, metastasis, and recurrence. Therefore, we applied this model in our studies of highly active antitumor unsymmetrical bisacridines (UAs). We investigated the cellular response induced by UAs in 2D and 3D cultures of HCT116 colon and A549 lung cancer...
-
Enhanced Activity of P4503A4 and UGT1A10 Induced by Acridinone Derivatives C-1305 and C-1311 in MCF-7 and HCT116 Cancer Cells: Consequences for the Drugs’ Cytotoxicity, Metabolism and Cellular Response
PublicationActivity modulation of drug metabolism enzymes can change the biotransformation of chemotherapeutics and cellular responses induced by them. As a result, drug-drug interactions can be modified. Acridinone derivatives, represented here by C-1305 and C-1311, are potent anticancer drugs. Previous studies in non-cellular systems showed that they are mechanism-based inhibitors of cytochrome P4503A4 and undergo glucuronidation via UDP-glucuronosyltranspherase...
-
Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
Publication -
Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells
PublicationPoor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC50 and EC50) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-,...
-
The time-dependent cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer LNCaP cells
Open Research DataThe time-dependent (1, 24, 48, and 72 h) cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer LNCaP cells performed by Confocal Laser Scanning Microscopy (63× magnification; ZEISS LSM T-PMT, Magdeburg, Germany). Based on the fluorescence properties of these compounds, green and orange fluorescence...
-
The time-dependent cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer H460 cells
Open Research DataThe time-dependent (1, 24, 48, and 72 h) cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer H460 cells performed by Confocal Laser Scanning Microscopy (63× magnification; ZEISS LSM T-PMT, Magdeburg, Germany). Based on the fluorescence properties of these compounds, green and orange fluorescence...
-
The time-dependent cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer Du-145 cells
Open Research DataThe time-dependent (1, 24, 48, and 72 h) cellular uptake of C−2028, CD−C−2028, QDgreen−C−2028, and QDgreen−CD−FA−C−2028 conjugates at IC80 value to cancer Du-145 cells performed by Confocal Laser Scanning Microscopy (63× magnification; ZEISS LSM T-PMT, Magdeburg, Germany). Based on the fluorescence properties of these compounds, green and orange fluorescence...
-
Cyclic voltammetric biosensing of cellular ionic secretion based on silicon nanowires to detect the effect of paclitaxel on breast normal and cancer cells
Publication -
Antitumor imidazoacridinone derivative C-1311 induces cell cycle arrest and cellular senescence-like phenotypic changes in human non-small lung A549 cancer cells
PublicationPrzeprowadzone badania miały na celu zbadanie rodzaju odpowiedzi komórkowej indukowanej przez pochodną C1311 w komórkach ludzkiego, niedrobnokomórkowego raka płuc A549, wyselekcjonowanych do badań ze względu na wysoką wrażliwość na działanie pochodnej C-1311. Wszystkie eksperymenty przeprowadzone zostały przy stężeniu hamującym proliferację komórek nowotworowych w 80%. Badania z wykorzystaniem techniki cytometrii przepływowej oraz...
-
Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines.
PublicationIncreased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize...
-
Modified Peptide Molecules As Potential Modulators of Shelterin Protein Functions; TRF1
PublicationIn this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules....
-
From tryptophan to novel mitochondria-disruptive agent, synthesis and biological evaluation of 1,2,3,6-tetrasubstituted carbazoles
PublicationMitochondrial targeting plays an important role in anticancer therapy. The Mn(III)-promoted cyclization of 5- (1H-indol-3-yl)-3-oxopentanoic acid allow to obtain novel substituted carbazole derivatives that can act as mitochondria-disruptive agents. The starting materials used for the synthesis of these new aminocarbazoles are oxopentanoate derivatives of tryptophan. The scope and limitation of this method of synthesis are determined...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublicationAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Teloxantron inhibits the processivity of telomerase with preferential DNA damage on telomeres
PublicationTelomerase reactivation is one of the hallmarks of cancer, which plays an important role in cellular immortalization and the development and progression of the tumor. Chemical telomerase inhibitors have been shown to trigger replicative senescence and apoptotic cell death both in vitro and in vivo. Due to its upregulation in various cancers, telomerase is considered a potential target in cancer therapy. In this study, we identified...
-
Antitumor 1-nitroacridine derivative C-1748 induces significant apoptosis in pancreatic cancer cells.
PublicationPancreatic cancer is the fifth leading cause of cancer death and has the lowest survival rate of any solid cancer in the industrial countries. The poor prognosis of pancreatic cancer results from its tendency for late presentation, aggressive invasion, early metastasis, and resistance to chemotherapy. Gemcitabine still remains the best chemotherapeutic agent available for the treatment of advanced pancreatic cancer. However, gemcitabine...
-
Induction of G2/M phase arrest and apoptosis of human pancreatic cancer BxPC-3 cells by potenet antitumor 1-nitroacridine derivative C-1748
PublicationPancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers, in part because it is insensitive to many chemotherapeutic drugs. Gemcitabine still remains the best chemotherapeutic agent available for the treatment of advanced pancreatic cancer. However, gemcitabine treatment results in only a marginal survival advantage. Thus, there is a strong need for the continuous development of novel therapeutic agents...
-
Cell Density-Dependent Cytological Stage Profile and Its Application for a Screen of Cytostatic Agents Active Toward Leukemic Stem Cells
PublicationProliferation and expansion of leukemia is driven by leukemic stem cells (LSCs). Multidrug resistance (MDR) of LSCs is one of the main reasons of failure and relapses in acute myeloid leukemia (AML) treatment. In this study, we show that maintaining HL-60 at low cell culture density or applying a 240-day treatment with anthrapyridazone (BS-121) increased the percentage of primitive cells, which include LSCs determining the overall...
-
Therapeutic intervention by the simultaneous inhibition of DNA repair and type I or type II DNA topoisomerases: one strategy, many outcomes
PublicationMany anticancer drugs reduce the integrity of DNA, forming strand breaks. This can cause mutations and cancer or cell death if the lesions are not repaired. Interestingly, DNA repair-deficient cancer cells (e.g., those with BRCA1/2 mutations) have been shown to exhibit increased sensitivity to chemotherapy. Based on this observation, a new therapeutic approach termed 'synthetic lethality' has been developed, in which radiation...
-
Design, synthesis, and biological evaluation of tetrahydroquinolinones and tetrahydroquinolines with anticancer activity
PublicationColorectal cancer (CRC) is the most commonly diagnosed cancer in Europe and the United States and the second leading cause of cancer related mortality. A therapeutic strategy used for the treatment of CRC involves targeting the intracellular levels of reactive oxygen species (ROS). In this study, we synthesized a series of novel tetrahydroquinolinones and assessed their ability to inhibit CRC growth and proliferation by evoking...
-
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma-Recent Findings and Review
PublicationThe inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their...
-
Comparison of 2D and 3D culture models in the studies of the biological response induced by unsymmetrical bisacridines in cancer cells
PublicationMulticellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), responsible for cancer progression, metastasis, and recurrence. Therefore, following the initial evaluation of the impact of antitumor unsymmetrical bisacridines (UAs) on lung and colon cancer cells using traditional monolayer cultures, I extended my investigations and applied the spherical model....
-
c-Myc Protein Level Affected by Unsymmetrical Bisacridines Influences Apoptosis and Senescence Induced in HCT116 Colorectal and H460 Lung Cancer Cells
PublicationUnsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly those of the MYC and KRAS genes. Since MYC and KRAS are often mutated and constitutively expressed in cancer...
-
Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis
PublicationUnsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic...
-
c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells
PublicationBackground Pancreatic cancer (PC) is one of the most aggressive cancers and is the seventh leading cause of cancer-related death worldwide. PC is characterized by rapid progression and resistance to conventional treatments. Mutations in KRAS, CDKN2A, TP53, SMAD4/DPC4, and MYC are major genetic alterations associated with poor treatment outcomes in patients with PC. Therefore, optimizing PC therapy is a tremendous challenge. Unsymmetrical...
-
CHEMOTHERAPY-MEDIATED COMPLICATIONS OF WOUND HEALING. AN UNDERSTUDIED SIDE EFFECT
PublicationSignificance: Chemotherapy is a primary method to treat cancer, but while cytotoxic drugs are designed to target rapidly dividing cancer cells, they can also affect other cell types, including dermal cells and macrophages involved in wound healing, which often leads to the development of chronic wounds. The situation becomes even more severe when chemotherapy is combined with surgical tumor excision. Recent advances: Despite its...
-
PARP inhibition potentiates the cytotoxic activity of C-1305, a selective inhibitor of topoisomerase II, in human BRCA1-positive breast cancer cells
PublicationTwo cellular proteins encoded by the breast and ovarian cancer type 1 susceptibility (BRCA1 and BRCA2) tumor suppressor genes are essential for DNA integrity and the maintenance of genomic stability.Approximately 5-10% of breast and ovarian cancers result from inherited alterations or mutations in these genes.Remarkably, BRCA1/BRCA2-deficient cells are hypersensitive to selective inhibition of poly(ADPribose) polymerase 1 (PARP-1),...
-
Novel fused pyran derivatives induce apoptosis and target cell cycle progression in anticancer efficacy against multiple cell lines.
PublicationNitrogen-based heterocycles such as pyrazole, imidazole, 1,2,4-triazole, benzimidazole, and benzotriazole substituted fused pyran derivatives (6a–e, 8a–e, 10a–e, 12a–e,&14a–e) have been synthesized and tested for their in vitro anticancer efficacies against MCF7, A549, and HCT116 cancer cell lines. Among the compounds, 6e, 14b, and 8c were identified as the most potent against MCF7, A549, and HCT116, with IC50 values of 12.46 2.72...
-
Naturally-derived hydrogels for 3D pancreatic tumor models: A short review
PublicationStatistics suggest a high proportion of mortality rate by pancreatic cancer, which is a solid tumor characterized by high heterogeneity and the presence of a complex extracellular matrix. The very low effectiveness of pancreatic cancer treatment roots in the high metastatic potential and drug resistance of this tumor. Therefore, the quest for efficient cellular models enabling precise mimicking in vivo conditions, and anticancer...
-
In vitro biological evaluation of a novel folic acid-targeted receptor quantum dot−β−cyclodextrin carrier for C-2028 unsymmetrical bisacridine in the treatment of human lung and prostate cancers
PublicationTraditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot−β−cyclodextrin−folic acid (QD−β−CD−FA) platform for targeted and selected delivery of C−2028 unsymmetrical bisacridine in cancer therapy.Herein, we report an initial...
-
Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells
PublicationTargeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound...
-
DNA methylation in cancer development, diagnosis and therapy-multiple opportunities for genotoxic agents to act as methylome disruptors or remediators
PublicationThe role of DNA methylation and recently discovered hydroxymethylation in the function of the human epigenome is currently one of the hottest topics in the life sciences. Progress in this field of research has been further accelerated by the discovery that alterations in the methylome are not only associated with key functions of cells and organisms, such as development, differentiation and gene expression, but may underlie a number...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Metabolism of antitumour agent 1-nitroacridine derivative, C-1748 in pancreatic cancer cell lines
PublicationPancreatic cancer has the highest mortality rate of all major cancers because of limited treatment options. Surgical removal of the tumour is possible only in its early stage, nevertheless the asymptomatic development very often makes unable an accurate diagnose. In the case of metastatic pancreatic cancer only chemotherapy, mainly with gemcitabine, can be offered to patients. However, common resistance towards gemcitabine imposes...
-
Postbiotics in oncology: science or science fiction?
PublicationThe gut microbiome has been increasingly understood to play a critical role in carcinogenesis and cancer disease progression. The most recent research advancements have shown that different tools of microbiota manipulation contribute to gut microbiome–immune–oncology axis modulation, offering exciting opportunities for targeted interventions aimed at improving the efficacy of established anti-cancer therapy. Postbiotics are a new...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublicationCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Endocrine Disrupting Compounds – Problems and Challenges
PublicationIn this chapter, information about some of the estrogenic compounds and their environmental fate and biological influence can be found. Special attention is paid to the review of the analytical approaches used at the stages of detection and determination of Endocrine Disrupting Compounds (EDCs) in the environmental samples. Also, a brief characterization of both cellular and non-cellular bioassays is presented. The discovery of...
-
New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells
PublicationThe use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that unique combination of nanocrystals core components...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748
PublicationDrug resistance is one of the major cause of pancreatic cancer treatment failure. Thus, it is still imperative to develop new active compounds and novel approach to improve drug efficacy. Here we present 9-amino-1-nitroacridine antitumor agent, C-1748, developed in our laboratory, as a candidate for pancreatic cancer treatment. We examined (i) the cellular response of pancreatic cancer cell lines: Panc-1, MiaPaCa-2, BxPC-3 and...
-
Young Shoots of White and Red Headed Cabbages Like Novel Sources of Glucosinolates as Well as Antioxidative Substances
PublicationMost literature data indicate that the diet rich in plant products reduces the risk of developing chronic non-communicable diseases and cancer. Brassica vegetables are almost exclusively synthesizing glucosinolates. Glucosinolates are higher in sprouts than in mature plants, being related to the activity of the specific myrosinase involved in the degradation of glucosinolates during developmental stages. This study compares the...
-
Telomerase inhibition - unfulfilled hopes in the perfect molecular target
PublicationTelomerase plays a pivotal role in cell proliferation, homeostasis, and neoplastic transformation, making it a promising molecular target for cancer chemotherapy. Of note, although hTERT has been explored thoroughly as a target, none of the promising molecules has been approved as a drug until now. The subject of research conducted as part of my doctoral dissertation is explaining the cellular and molecular mechanism of action...
-
Transcriptomic Effects of Estrogen Starvation and Induction in the MCF7 Cells. The Meta-analysis of Microarray Results
PublicationEstrogen is one of the most important signaling molecules which targets a number of genes. Estrogen levels regulate cell proliferation and a plethora of metabolic processes, which may interfere with a range of medical conditions and drug metabolism. The MCF7 breast cancer cell line, expressing the estrogen receptor α, is a well-studied model of cellular answer to estrogen. The aim of this study was to characterize transcriptomic...
-
Metabolic transformation of antitumor acridinone C-1305 but not C-1311 via selective cellular expression of UGT1A10 increases cytotoxic response: implications for clinical use.
PublicationThe acridinone derivates C-1305 and C-1311 are promising antitumor agents with high activity against several experimental cellular and tumor models and which are under evaluation in pre-clinical and early phase clinical trials. Recent evidence from our laboratories has indicated that both compounds were conjugated by several UGT isoforms with the most active being extrahepatic UGT1A10. The present studies were designed to test...
-
Antitumor DNA-Damaging C-1748 is a New Inhibitor of Autophagy that Triggers Apoptosis in Human Pancreatic Cancer Cell Lines
PublicationDespite the enormous progress that has been made over the past decades in diagnosis, treatment and prevention of many types of tumors, survival rates in pancreatic cancer still remain poor. Pancreatic cancer is one of the most malignant and chemoresistant tumors and the profound mechanism supporting these phenomena is the constitutively activated prosurvival autophagy. The antitumor 1-nitroacridine derivative C-1748 belongs to...
-
DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells
PublicationImidazoacridinone 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) is an antitumor inhibitor of topoisomerase II and FMS-like tyrosine kinase 3 receptor. In this study, we describe the unique sequence of cellular responses to C-1311 in human non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In A549 cells, C-1311 (IC80 = 0.08 µM) induced G1 and G2/M arrests, whereas H460 cells (IC80 = 0.051 µM) accumulated...
-
Successive cytotoxicity control by evolutionary surface decorated electronic push-pull green ZnCr-LDH nanostructures: Drug delivery enlargement for targeted breast cancer chemotherapy
PublicationThe reason for the increasing bioavailability and biocompatibility of the porous nanomaterials in the presence of different (bio)molecules is still unknown. The role of difference functional groups and their interactions with the potential bioavailability and biocompatibility is of great importance. To investigate the potential contribution of the electronic effects (especially on the surface of the porous nanomaterials) on their...
-
Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation
PublicationHypoxia—a hallmark of solid tumors—makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet...