Search results for: STEEL MOMENT-RESISTING FRAMES
-
Effect of Base-Connection Strength and Ductility on the Seismic Performance of Steel Moment-Resisting Frames
PublicationColumn-base connections in steel moment-resisting frames (SMFs) in seismic regions are commonly designed to develop the capacity of adjoining column with an intent to develop a plastic hinge in the column member, rather than in the connection (i.e., a strong-base design). Recent research has shown base connections to possess high ductility, indicating that this practice may be not only expensive but also unnecessary. This suggests...
-
Improvement of Performance Level of Steel Moment-Resisting Frames Using Tuned Mass Damper System
PublicationIn this paper, parameters of the tuned mass dampers are optimized to improve the performance level of steel structures during earthquakes. In this regard, a six-story steel frame is modeled using a concentrated plasticity method. Then, the optimum parameters of the Tuned Mass Damper (TMD) are determined by minimizing the maximum drift ratio of the stories. The performance level of the structure is also forced to be located in a...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Development of fragility curves in adjacent steel moment-resisting frames considering pounding effects through improved wavelet-based refined damage-sensitive feature
PublicationFragility curves present useful information related to earthquake-induced probability assessment of steel moment-resisting frames (MRFs) and determine the probability of the damage exceedance at different floor levels of MRFs. The review of the literature shows that most of the previous studies dealing with the fragility curves were based on conventional measures, such as spectral acceleration at the first mode period, peak...
-
Evaluation of overstrength-based interaction checks for columns in steel moment frames
PublicationCurrent design guidelines in the United States require a check for only column axial force under overstrength seismic loads for capacity-designed steel moment frames. A study is presented to examine the implications of this guidance, which disregards the column interaction check (including both axial force and moment) under overstrength seismic loads. A set of thirteen steel moment frames are designed using multiple rules that...
-
Column base fixity in steel moment frames: Observations from instrumented buildings
PublicationThe rotational fixity of column base connections in Steel Moment Resisting Frames (SMRFs) strongly influences their seismic response. However, approaches for estimating base fixity have been validated only against laboratory test data. These approaches are examined based on strong motion recordings from four instrumented SMRF buildings in California to informbest practices for seismic response simulation. These buildings represent...
-
Effects of Column Base Flexibility on Seismic Response of Steel Moment-Frame Buildings
PublicationSteel Moment Resisting Frames (SMRFs) are very popular lateral load resisting systems in many seismically active regions. However, their seismic response is strongly dependent on the rotational fixity of column base connections. Despite many studies (both experimental and numerical) in this particular area, available approaches for estimating column base flexibility have been validated only against laboratory test data. In the...
-
Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials
PublicationThe permanent deformation of the building after seismic excitations can be determined by the Maximum Residual Interstory Drift Ratio (MR-IDR), which may be used for measuring the damage states. Low-post yield stiffness of the steel buckling-restrained braced frame (BRBF) makes this system vulnerable to large MR-IDR after a severe earthquake event. To overcome this issue, this paper investigates the seismic limit state performances...
-
Seismic probabilistic assessment of steel and reinforced concrete structures including earthquake-induced pounding
PublicationRecent earthquakes demonstrate that prioritizing the retrofitting of buildings should be of the utmost importance for enhancing the seismic resilience and structural integrity of urban structures. To have a realistic results of the pounding effects in modeling process of retrofitting buildings, the present research provides seismic Probability Factors (PFs), which can be used for estimating collision effects without engaging in...
-
Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs
PublicationAn insufficient separation distance between adjacent buildings is the main reason for structural pounding during severe earthquakes. The lateral load resistance system, fundamental natural period, mass, and stiffness are important factors having the influence on collisions between two adjacent structures. In this study, 3-, 5- and 9-story adjacent reinforced concrete and steel Moment Resisting Frames (MRFs) were considered to investigate...
-
Enhancing seismic performance of steel buildings having semi-rigid connection with infill masonry walls considering soil type effects
PublicationUnpreventable constructional defects are the main issues in the case of steel Moment-Resisting Frames (MRFs) that mostly occur in the rigidities of beam-to-column connections. The present article aims to investigate the effects of different rigidities of structures and to propose Infill Masonry Walls (IMWs) as retrofitting strategy for the steel damaged buildings. A fault or failure to meet a certain consideration of the soil type...
-
Seismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive feature
PublicationThis paper aims to propose complex Morlet (cmorfb-fc) wavelet-based refined damage-sensitive feature (rDSF) as a new and more precise damage indicator to diagnose seismic damages in adjacent steel and Reinforced Concrete (RC) Moment Resisting Frames (MRFs) assuming pounding conditions using acceleration responses. The considered structures include 6- and 9-story steel and 4- and 8-story RC benchmark MRFs that are assumed to have...
-
Performance of Vector-valued Intensity Measures for Estimating Residual Drift of Steel MRFs with Viscous Dampers
PublicationViscous Dampers (VDs) are widely used as passive energy dissipation system for improving seismic performance levels especially in retrofitting of buildings. Residual Inter-story Drift Ratio (R-IDR) is another important factor that specifies the condition of building after earthquake. The values of R-IDR illustrates the possibility of retrofitting and repairing of a building. Therefore, this study aims to explore the vector-valued...
-
Seismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive feature
PublicationThis paper aims to propose complex Morlet (cmorfb-fc) wavelet-based refined damage-sensitive feature (rDSF) as a new and more precise damage indicator to diagnose seismic damages in adjacent steel and Reinforced Concrete (RC) Moment Resisting Frames (MRFs) assuming pounding conditions using acceleration responses. The considered structures include 6- and 9-story steel and 4- and 8-story RC benchmark...
-
Deformation mitigation and twisting moment control in space frames
PublicationOver the last five decades, space frames have centered on the modernization of touristic zones in view of architectural attractions. Although attempts to control joint movement and minimize axial force and bending moment in such structures were made sufficiently, twisting moments in space frames have been underestimated so far. In space frames, external load or restoring the misshapen shape may cause twisting in members. We herein...
-
Advanced Scalar-valued Intensity Measures for Residual Drift Prediction of SMRFs with Fluid Viscous Dampers
PublicationMaximum Residual Inter-story Drift Ratio (RIDRmax) plays an important role to specify the state of a structure after severe earthquake and the possibility of repairing the structure. Therefore, it is necessary to predict the RIDRmax of Steel Moment-Resisting Frames (SMRFs) with high reliability by employing powerful Intensity Measures (IMs). This study investigates the efficiency and sufficiency of scalar-valued IMs for predicting...
-
Enhancing Seismic Performance of Semi-rigid Connection Using Shape Memory Alloy Bolts Considering Nonlinear Soil–Structure Interaction
PublicationSteel Moment-Resisting Frames (SMRFs) have their lateral resistance for their rigid connections, while real conditions have shown that the rigidity of a connection depends on the bolts and the end-plate thickness, which may not provide the assumed rigidity in design process. In this research, the main goal is to enhance the semi-rigid connections using shape memory alloy (SMA) bolts and explore their effects on the seismic limit-state...
-
Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil-structure interaction
PublicationInfill Masonry Walls (IMWs) are used in the perimeter of a building to separate the inner and outer space. IMWs may affect the lateral behavior of buildings, while they are different from those partition walls that separate two inner spaces. This study focused on the seismic vulnerability assessment of Steel Moment-Resisting Frames (SMRFs) assuming different placement of IMWs incorporating nonlinear Soil-Structure Interaction (SSI)....
-
Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction
PublicationNowadays, using smart connections can improve the performance of buildings with some recentering features that are from the superelastic behavior of Shape Memory Alloys (SMAs). It seems that there is different rigidity between the designed connection and the real one in Steel Moment-Resisting Frames (SMRFs), which can be considered as a problematic issue due to the importance of connections in seismic performance assessment. This...
-
Investigating an Optimal Computational Strategy to Retrofit Buildings with Implementing Viscous Dampers
PublicationCivil engineering structures may seriously suffer from different damage states re-sult of earthquakes. Nowadays, retrofitting the existing buildings is a serious need among designers. Two important factors of required performance level and cost of retrofitting play a crucial role in the retrofitting approach. In this study, a new optimal computational strategy to retrofit structures by implementing linear Viscous Dampers (VDs)...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Optimal retrofit strategy using viscous dampers between adjacent RC and SMRFs prone to earthquake‑induced pounding
PublicationNowadays, retrofitting-damaged buildings is an important challenge for engineers. Finding the optimal placement of Viscous Dampers (VDs) between adjacent structures prone to earthquake-induced pounding can help designers to implement VDs with optimizing the cost of construction and achieving higher performance levels for both structures. In this research, the optimal placement of linear and nonlinear VDs between the 3-story, 5-story,...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublicationSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Enhancing seismic performance of buckling-restrained brace frames equipped with innovative bracing systems
PublicationNowadays, to improve the performance of conventional bracing systems, in which, buckling in the pressure loads is the main disadvantage, the buckling-restrained brace (BRB) is introduced as a solution. In this study, the performance of the BRB system was improved with innovative lateral-resisting systems of double-stage yield buckling-restrained brace (DYB), and a combination of DYB improved with shape memory alloy (SMA) materials...
-
Evaluation of pounding effects between reinforced concrete frames subjected to far-field earthquakes in terms of damage index
PublicationIn this paper, three different damage indexes were used to detect nonlinear damages in two adjacent Reinforced Concrete (RC) structures considering pounding effects. 2-, 4- and 8-story benchmark RC Moment Resisting Frames (MRFs) were selected for this purpose with 60%, 75%, and 100% of minimum separation distance and also without any in-between separation gap. These structures were analyzed using the incremental dynamic analysis...
-
Bending Moment Control and Weight Optimization in Space Structures by Adding Extra Members in the Optimal Locations
PublicationThis paper investigates the reduction of bending moment in critical members by adding some extra members in the optimum location. Instead of enlarging the size of members to resist the moment, eight additional members are added in the optimum location to reduce the bending moment in the critical members. The total weight of the proposed structure with extra members is less than that of the original structure that resists the induced...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublicationNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Seismic Response Analysis of Knee-Braced Steel Frames Using Ni-Ti Shape Memory Alloys (SMAs)
PublicationShape Memory Alloys (SMAs) are known as active materials that can be widely used for structural purposes due to their flag-shape behavior under loading and reloading. Their unique characteristics provided a potential solution for civil engi-neers especially to model buildings with the capability of dissipating seismic en-ergy. In this study, the main purpose is to explore the seismic behavior of Knee-Braced Frames (KBFs) and...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublicationSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Fragility analysis of structural pounding between adjacent structures arranged in series with various alignment configurations under near‑field earthquakes
PublicationA major cause of local to total damages is related to structural pounding in a large number of past earthquakes. In general, these collisions take place as a result of differences in the dynamic characteristics of the colliding structures. To acquire a better perception of the behavior of structures, in this paper, three structures featuring different heights are modeled in series and with various configurations next to each other...
-
Analiza porównawcza metod zwiększania nośności i sztywności stalowych, doczołowych węzłów śrubowych.
PublicationInnowacyjna, w porównaniu z dotychczas stosowanym sposobem, metoda obliczania nośności stalowych węzłów została wdrożona wraz z normami europejskimi. Pozwala ona dokładniej odwzo-rować rzeczywistą pracę poszczególnych części węzła, gdyż wynik obliczeń uzależniony jest od znacznie większej liczby zmiennych. Dzięki postępowi technologicznemu w zakresie metalurgii oraz badaniom naukowym obecnie możliwe jest wzmacnianie połączeń...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Estimation of nonstructural stiffness in instrumented steel frames
PublicationLateral stiffness of nonstructural components may significantly influence the initial stiffness of the entire structure and consequently alter its dynamic characteristics. While methods for simulating structural members are well-established, approaches for modeling nonstructural components that also participate in seismic response are notably less developed. In this paper a simplified, physically-intuitive approach for estimating...
-
Influence of the femoral offset on the muscles passive resistance in total hip arthroplasty
PublicationBackground Soft tissue tension is treated as a crucial factor influencing the post-THA dislocation. The femoral offset is regarded as one of the major parameters responsible for the stabilization of the prosthesis. It is unclear which soft tissue is mostly affected by the offset changes. Methods A finite element model of the hip was created. The model comprised muscles, bones, a stem, the acetabular component and a liner. The muscles...
-
Lateral load resistance of piled raft foundation - A case study of District Jail, Saidu Sharif, Swat Pakistan
PublicationPiled raft foundations under lateral loads are usually designed as a pile group, ignoring the contribution of the raft to resisting the lateral loads. In this paper, a case study was performed to determine the raft's contribution to the lateral load resistance. This study analyzed a pile-supported reinforced concrete retaining wall for two different foundation conditions, i.e., pile group foundation and pile raft foundation. Pile group...
-
NONSTRUCTURAL STIFFNESS ASSESSMENT IN INSTRUMENTED STEEL BUILDINGS
PublicationLateral stiffness of nonstructural components may significantly influence the initial stiffness of the entire structure and consequently alter its dynamic characteristics. While methods for simulating structural members are well-established, approaches for modeling nonstructural components that also participate in seismic response are notably less developed. In this paper a simplified, physically-intuitive approach for estimating...
-
Numerical Analysis of a Steel Frame Building with Soft-storey Failure under Ground Motion Excitation
PublicationThe aim of this paper is to show the results of a numerical analysis focused on the behaviour of multi-storey steel frame building that suffers from a soft-storey failure under ground motion excitation. A numerical model of the structure was created in FEM computer software and was exposed to an impact that would have been generated after a soft-storey failure due to falling of the upper floors. During the analysis, the whole structure...
-
Experimental Testing of Innovative Cold-Formed "GEB" Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu „Geb“
PublicationOne of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight, so manufacturers are increasingly using the possibilities of those sections for the production of typical single-storey steel structures systems. Well known profiles, such as Z, C and the so called hat sections that have been studied and described in the literature, are used mainly as purlins or truss components....
-
Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels
PublicationThe present research aims to study the influence of the soil-structure interaction (SSI) and existence or absence of masonry infill panels in steel frame structures on the earthquake-induced pounding-involved response of adjacent buildings. The study was further extended to compare the pounding-involved behavior versus the independent behavior of structures without collisions, focusing much on dynamic behavior of single frames....
-
Three-Dimensional Fractography for Conventional and Additive Manufactured Steels After Bending-Torsion Fatigue
PublicationIn this study, fracture surface topography parameters were measured to investigate the effects of multiaxial loading. In order to assess the metrological aspects of fracture for notched specimens made of high-strength steels processed by both conventional and additively manufacturing (AM) techniques, an optical surface profilometer was used. Three bending moment to torsion moment ratios (B/T) were studied, i.e. 2, 1 and 2/3. The...
-
Shell model of multiple-row moment I-section end-plate joint
PublicationThe paper deals with a problem of application of shell elements in the models of multiple-row moment end-plate connections. The extended connection of I-section with a cross-section W760x265x220 made of steel S355 was analyzed. Comparison analysis of FEM, complex volume and shell models has been done. Three cases with different end-plate thickness: 14, 18 and 36 mm were analyzed and compared with the reference results. Comparison...
-
Thin-walled cross section shape influence on steel member resistance.
PublicationThis work describes why trending thin-walled technology is achieving popularity in steel construction sector. A purpose of this article is to present the influence of the cold-formed element cross-section shape on an axial compression and a bending moment resistance. The authors have considered four different shapes assuming constant section area and thickness. Calculations were based on three different steel grades taking into...
-
The reasons of considarable deflections of roof trusses in engineering analysis
PublicationThe aim of the paper is to present an unconventional analysis of deformations of roof trusses of an exhibition pavilion. Structure of the main hall of the pavilion consists of repeatable span frames with steel pillars made of I-sections, fastened in the foundations and hinged supporting roof girders. The roof trusses, completed in steel construction, have undergone considerable permanent deflections. Deformations of the lower chord...
-
The energy approach to fatigue crack growth of S355 steel welded specimens subjected to bending
PublicationThe study presents the results of the research on the rate of fatigue crack growth subjected to bending in the ferritic-pearlitic structure. The studies were carried out at a constant amplitude of the moment and at various values of the load ratios R and at the operating frequency of the machine of 28.4 Hz. Flat specimens made of S355 steel and with fillet welds and with double-sided blunt external notches as well as concave...
-
A COMPARISON OF WEAR PROPERTIES OF WATER LUBRICATED NBR AND PTFE SLIDING BEARINGS
PublicationThe excessive wear of a journal shaft can be caused by many factors, for example, working conditions (e.g., temperaturę, slip speed, the type of lubricant), pressure, the type of material used on the bearings and shafts and their roughness, as well as contamination remaining in the system. This paper presents the roughness profiles co-operating with a rubber (NBR) and polytetrafluoroethylene (PTFE) bushes. The conditions of cooperation...
-
Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels
PublicationThe aim of the present paper is to study the influence of the infill panels on the seismic pounding response of adjacent structures in series. The contribution of the masonry infill has been simulated using equivalent diagonal compression struts. Steel frames have been assumed to have elastic-plastic behavior with 1% linear strain hardening. The dynamic contact analysis has been utilized where contact surface model (target and...
-
The effect of external load on ultrasonic wave attenuation in steel bars under bending stresses
PublicationThe stress state in deformed solids has a significant impact on the attenuation of an ultrasonic wave propagating through the medium. Measuring a signal with certain attenuation characteristics can therefore provide useful diagnostic information about the stress state in the structure. In this work, basic principles behind a novel attenuation-based diagnostic framework are introduced. An experimental study on steel bars under three-point...
-
Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue
PublicationThe present study evaluates the fracture surface response of fatigued 34CrNiMo6 steel bars with transverse blind holes subjected to bending with torsion loading. The analysis of the geometric product specification was performed by means of height parameters Sx, functional volume parameters Vx, and fractal dimension Df. Surface topography measurements were carried out using an optical profilometer with focus variation technology....
-
Diaryl Sulfide Derivatives as Potential Iron Corrosion Inhibitors: A Computational Study
PublicationThe present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4′-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the...