Search results for: TISSUE ENGINEERING.
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublicationFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublicationThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
TISSUE ENGINEERING
Journals -
Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering
PublicationThe literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL). The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than...
-
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublicationBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Synthesis and characterization of novel aliphatic polyurethanes for tissue engineering applications
PublicationSummarizing, in this thesis was described the synthesis of novel PUR system, which was obtained by using aliphatic diisocyanate (HDI), amorphous macrodiol (PEBA) and chain extender (BDO). This PUR system was established as suitable for TE purpose and successfully modified with AA, which as expected improved its biocompatibility. According to this, AA-modified HDI-based PURs is the PUR system ready for further studies including...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublicationA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublicationBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Advances in Natural Polymer-Based Electrospun Nanomaterials for Soft Tissue Engineering
Publication -
Journal of Tissue Engineering
Journals -
Tissue Engineering Part A
Journals -
Current Tissue Engineering
Journals -
The characterization of collagen‑based scaffolds modified with phenolic acids for tissue engineering application
PublicationThe aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic...
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
Tissue Engineering and Regenerative Medicine
Journals -
Journal of Biomaterials and Tissue Engineering
Journals -
Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system
PublicationElectrospinning is the unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of cardiovascular system. Such artificial soft tissues of cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportu nity to form fibres with nm- to μm-scale in diameter. The arrangement...
-
Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system
Publication -
l-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications
PublicationIn this paper we created novel poly(ester urethane)s (PESUs) designed specifically for tissue engineering. The PESUs were derived from oligomeric α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA), 1,4-butanediol (BDO) and aliphatic 1,6-hexamethylene diisocyanate (HDI) and modified with l-ascorbic acid to improve their biocompatibility. In addition, we determined their mechanical properties (such as tensile strength, elongation at...
-
Journal of Biomimetics, Biomaterials, and Tissue Engineering
Journals -
Tissue Engineering Part B-Reviews
Journals -
Tissue Engineering Part C-Methods
Journals -
Chinese Journal of Tissue Engineering Research
Journals -
Studies in Mechanobiology, Tissue Engineering and Biomaterials
Journals -
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublicationIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
PublicationThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially...
-
Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction
PublicationTissue adhesives have been widely used for preventing wound leaks, sever bleeding, as well as for enhancing drug delivery and biosensing. However, only a few among suggested platforms cover the circumstances required for high-adhesion strength and biocompatibility, without toxicity. Antibacterial properties, controllable degradation, encapsulation capacity, detectability by image-guided procedures and affordable price are also...
-
Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications
Publication -
Friction and flow around growing tissue in bioreactor. Proceedings of the Biomechanics 2003. Engineering Biomechanics - Biomechanics of Sport - Medical Biomechanics.
PublicationPrzedstawione zostały problemy teoretyczne związane z wyznaczaniem sił tarcia, współczynników tarcia, rozkładów wartości ciśnienia w warstwie przyściennej wytworzonej wokół hodowanej tkanki w bioreaktorze w trakcie opływu tej tkanki cieczami biologicznymi o właściwościach lepkosprężystych. Model Rivlina Ericksena lepkosprężystej cieczy biologicznej jest tu brany pod uwagę.
-
Journal of Tissue Engineering and Regenerative Medicine
Journals -
Examination of epigenetic inhibitor zebularine in treatment of skin wounds in healthy and diabetic mice
PublicationDNA methyltransferase inhibitor zebularine was proven to induce regeneration in the ear pinna in mice. We utilized a dorsal skin wound model to further evaluate this epigenetic inhibitor in wound healing. Full-thickness excisional wounds were made on the dorsum of 2 and 10-month-old healthy BALB/c and 3 and 8-month-old diabetic (db/db) mice, followed by topical or intraperitoneal zebularine delivery. Depending on the strain, age,...
-
Mariusz Kaczmarek dr hab. inż.
PeopleReceived M.Sc., Eng. in Electronics in 1995 from Gdansk University of Technology, Ph.D. in Medical Electronics in 2003 and habilitation in Biocybernetics and Biomedical Engineering in 2017. He was an investigator in about 13 projects receiving a number of awards, including four best papers, practical innovations (7 medals and awards) and also the Andronicos G. Kantsios Award and Siemens Award. Main research activities: the issues...
-
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
PublicationRecently, in the field of biomaterials, which are being designed for soft tissue scaffolding, is growing the interest of their modification with natural polymers. Synthetic polymers are often hard, not easy to process and they do not possess fine biodegradable profile. From the other hand natural polymers are biocompatible, but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublicationBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications
PublicationTissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with...
-
TISSUE ANTIGENS
Journals -
Poloxamer: A versatile tri-block copolymer for biomedical applications
PublicationPoloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials...
-
Polyurethanes modified with natural polymers for medical application. I. Polyurethanes/ Chitosan and polyurethane/collagen.
PublicationFor over three decades polyurethanes (PUR or PU) have been reported for application in a variety of medical devices. These polymers consist of hard and soft segments, which allow for more subtle control of their structure and properties. By varying the composition of the different segments, properties of PURcan be tuned up for use in many areas of medicine. Recently there is a great interest in modification of biomedical PUR with...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublicationIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
Magnetic nanocomposites for biomedical applications
PublicationTissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular,...
-
Imunofan—RDKVYR Peptide—Stimulates Skin Cell Proliferation and Promotes Tissue Repair
PublicationRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today’s science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we...
-
PLANT CELL TISSUE AND ORGAN CULTURE
Journals -
Imunofan - RDKVYR peptide - stimulates skin cell proliferation and promotes tissue repair
PublicationRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical...
-
Polylysine for Skin Regeneration: A Review of Recent Advances and Perspectives
PublicationThere have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can not only be used as tissue engineering scaffolds for skin regeneration, but also as drug carriers...
-
CONNECTIVE TISSUE RESEARCH
Journals -
CELL AND TISSUE BANKING
Journals -
CALCIFIED TISSUE INTERNATIONAL
Journals -
Fibrogenesis & Tissue Repair
Journals -
Journal of Tissue Viability
Journals -
Cell and Tissue Biology
Journals