Filters
total: 103
Search results for: ZNIN2S4 MICROSPHERES
-
Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system
PublicationA new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited...
-
Capping ligand initiated CuInS2 quantum dots decoration on, ZnIn2S4 microspheres surface under different alkalinity levels resulting in different hydrogen evolution performance
PublicationSurface distribution of quantum dots (QDs) at the semiconductor matrix caused by synthesis condition (e.g. pH of solution during coupling) could lead to different photocatalytic activity. Thus, achieving an optimal covering of semiconductor matrix by QDs has been challenging. Herein, the influence of the alkalinity level of aqueous decoration medium for the coupling of mercaptoundecanoic acid (MUA) capped CuInS2 quantum dots (CIS)...
-
Lanthanide-organic-frameworks modified ZnIn2S4 for boosting hydrogen generation under UV–Vis and visible light
PublicationNovel Ln-MOF with microrods shape were successfully combined with ZnIn2S4 (ZIS) microsphere and used for photocatalytic hydrogen generation under UV–Vis and visible light. The Ln-MOFs/ZIS system comprises lanthanide-carboxylate coordination networks (Tm and Gd as metal ions, and 1,3,5-benzenetricarboxylic acid (BTC) as the organic linker) deposited on ZnIn2S4 microspheres. Effect of the amount of ((Tm,Gd)-BTC) (1, 5, 10 wt%) on...
-
Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres
PublicationA designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends...
-
The Effect of Fly Ash Microspheres on the Pore Structure of Concrete
PublicationThe fly ash microspheres (FAMs) formed during the mineral transformation stage in coal combustion are hollow spherical particles with a density less than water. This paper presents the results of X‐ray micro‐computed tomography and an automatic image analysis system of the porosity in the structure of hardened concrete with microspheres. Concrete mixtures with ordinary Portland cement and two substitution rates of cement by microspheres—5%...
-
The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
PublicationThe new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
-
Evaluation of sorption capabilities of biopolymeric microspheres by the solid-phase extraction
Publication -
Antibiotic loaded microspheres as antimicrobial delivery systems for medical applications
Publication -
The xanthene dyes doped PMMA microspheres for optical sensor applications
Publication -
The impact of lignin addition on the properties of hybrid microspheres based on trimethoxyvinylsilane and divinylbenzene
Publication -
Preparation, characterization and photocatalytic activity of TiO2 microspheres decorated by bimetallic nanoparticles
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Microsphere structure application for supercapacitor in situ temperature monitoring
PublicationConstant, real-time temperature monitoring of the supercapacitors for efficient energy usage is in high demand and seems to be crucial for further development of those elements. A fiber-optic sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc oxide (ZnO) coating fabricated in the atomic layer...
-
Highly Active TiO2 Microspheres Formation in the Presence of Ethylammonium Nitrate Ionic Liquid
PublicationSpherical microparticles of TiO2 were synthesized by the ionic liquid-assisted solvothermal method at different reaction times (3, 6, 12, and 24 h). The properties of the prepared photocatalysts were investigated by means of UV-VIS diffuse-reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy...
-
Effect of Particle Size of Fly Ash Microspheres (FAMs) on the Selected Properties of Concrete
PublicationThis paper presents the investigations of selected properties of concrete containing two fractions of fly ash microspheres (FAMs) with grain size up to 200 μm and up to 500 μm. Concrete mixtures with ordinary Portland cement and three substitution rates of cement by FAMs, 1.3%, 2.0%, and 2.6%, were investigated. For all concrete mixes, the constant water–binder ratio (w/b) equal to 0.50 was used. The research program included the...
-
ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements
PublicationIn this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during...
-
ZnO coated fiber optic microsphere sensor for the enhanced refractive index sensing
PublicationOptical fiber-based sensors are expected to become key components in the control of industrial processes,and the tuning and the enhancement of their sensing properties are crucial for the further developmentof this technology. Atomic Layer Deposition (ALD), a vapor phase technique allowing for the deposition ofconformal thin films, is particularly suited for the deposition of controllable thin films on challenging sub-strates....
-
The influence of ILs on TiO2 microspheres activity towards 5-FU removal under artificial sunlight irradiation
PublicationIn this work, the effect of various ionic liquids (ILs), namely, choline chloride [Chol][Cl], hexadecylpyridynium chloride [HDPy][Cl], and tributylmethylammonium chloride [TBMA][Cl], on the morphology, surface compo-sition in relation to photocatalytic oxidation of 5-fluorouracil (5-FU) and phenol in the presence of TiO2 pho-tocatalysts under artificial sunlight conditions was investigated. The highest photoactivity towards cytostatic...
-
Optical-Fiber Microsphere-Based Temperature Sensors with ZnO ALD Coating—Comparative Study
PublicationThis study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor...
-
Thermal degradation behavior of lignin-modified porous styrene-divinylbenzene and styrene-bisphenol A glycerolate diacrylate copolymer microspheres
Publication -
Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Ag modified ZnO microsphere synthesis for efficient sonophotocatalytic degradation of organic pollutants and CO2 conversion
Publication -
Preparation and Characterization of Microsphere ZnO ALD Coating Dedicated for the Fiber-Optic Refractive Index Sensor
PublicationWe report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C....
-
Ag modified ZnO microsphere synthesis for efficient sonophotocatalytic degradation of organic pollutants and CO2 conversion
PublicationThe synthesis and design of non-precious and efficient sonophotocatalyts by an environment friendly technique are requisites for solar energy conversion and environmental remediation. This work reports the preparation of Ag/ZnO microspheres with different Ag contents through deposition–precipitation method for pollutant degradation and CO2 conversion. Detail structural investigation reveals that ZnO microspheres and Ag-ZnO microspheres...
-
TiO2 /SrTiO3 and SrTiO3 microspheres decorated with Rh, Ru or Pt nanoparticles: Highly UV–vis responsible photoactivity and mechanism
PublicationA series of TiO2/SrTiO3 and SrTiO3 microspheres decorated by Rh, Ru or Pt NPs were prepared by facile hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) with energy-dispersive Xray (EDX) spectroscopy, scanning electron microscopy (SEM), photoluminescence spectrometry (PL), Fourier transform infrared (FT-IR) and...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublicationTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Fiber optic microsphere with a ZnO thin film for potential application in a refractive index sensor – theoretical study
PublicationOptical fiber sensors of refractive index play an important role in analysis of biological and chemical samples. This work presents a theoretical investigation of spectral response of a fiber optic microsphere with a zinc oxide (ZnO) thin film deposited on the surface and evaluates the prospect of using such a structure for refractive index sensing. A microsphere is fabricated by an optical fiber tapering method on the base of...
-
Photocatalytic hydrogen evolution from glycerol-water mixture under visible light over zinc indium sulfide (ZnIn2S4) nanosheets grown on bismuth oxychloride (BiOCl) microplates
PublicationZnIn2S4 (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnIn2S4 (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally...
-
Striking influence of Fe2O3 on the “catalytic carbonization” of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red
Publication -
X-ray diffraction of ZnIn2S4 layers on TiO2NT and FTO annealed at different temperatures
Open Research DataData show XRD results for ZnIn2S4 layers deposited using hydrothermal method on FTO glass and TiO2 nanotubes. The layers were annealed in air atmosphere at 300, 400 and 500 oC.
-
Design and Preparation of Magnetically-Oriented Poly(styr-co-MMA)-3MPS Capped Fe(ZnO) Hybrid Microspheres for Ion Exchange Removal of Toxic Pollutants from Wastewater
PublicationIn this work, polymeric microspheres derived from polystyrene-co-methyl methacrylate embedded with magnetic ZnO nanoparticles (poly(styrene-co-MMA)-3MPS-Fe (ZnO)) were synthesized using the suspension polymerization method. The surfaces of polymeric Fe(ZnO) microspheres were improved by functionalization with amino and sulphonate groups. The physicochemical analysis indicated a large number of positively charged (anion exchange)...
-
WYBRANE WŁAŚCIWOŚCI FIZYCZNO-CHEMICZNE MIKROSFER I MOŻLIWOŚĆ ICH WYKORZYSTANIA W KOMPOZYTACH CEMENTOWYCH : The selected physico-chemical properties of microspheres and possibility of their use in cement composites
PublicationMicrospheres are formed during the mineral transformation stage in coal combustion. Their content in fly ashes from the combustion of different types of coals varies over a rather wide range from 0.01 to 4.8 wt.%. The microspheres have three main elements, silicon, aluminum and iron, the oxides of which account for about 89.0 wt.% of the material. Mineralogical analysis using XRD shows that microspheres mainly contain mullite and...
-
Formation, crystal and molecular structures of heteroleptic zinc(II) tri-tert-butoxysilanethiolates with ZnNO2S2 and ZnN2S2 coordination pattern
Publication -
Formation, crystal and molecular structures of heteroleptic zinc(II) tri-tert-butoxysilanethiolates with ZnNO2S2 and ZnN2S2 coordination pattern.
PublicationZsyntetyzowano pięć tri-tert-butoksysilanotiolanów cynku zawierających jako dodatkowe ligandy heterocykliczne, zasady azotowe. Wzór ogólny tych kompleksów to Zn(SSi(OBut)3)2L, gdzie L=alfa-pikolina, 2,4-lutydyna, N-metyloimidazol lub Zn(SSiOBut)3)2L2, gdzie L=N-metyloimidazol lub pirydyna. Określono strukturę krystaliczną otrzymanych związków oraz zmierzono widma IR i NMR.
-
The influence of the size of a one-faced metallic head in Janus nanoparticles as a co-catalyst on the photocatalytic efficiency of hydrogen evolution under vis light irradiation
PublicationJanus nanoparticles (NPs) consisting of MoOxSy nanospheres and silver (Ag) head, successfully developed by a simple, controlled method were in the first time they were applied as a co-catalysts in photocatalytic hydrogen generation reaction under vis light irradiation (λ > 420 nm). The MoOxSy-Ag as a co-catalysts were deposited on the obtained ZnIn2S4 microspheres (ZIS) using physical absorption method. The influence of the size...
-
Development of Microstructured Carbon Coatings by Substrate-Catalytic CVD
PublicationCarbon nanostructured films were synthesized by chemical vapor deposition (CVD) on H18 stainless steel (AISI 440C) sheets with an H2/CH4/N2 gas mixture at various substrate temperatures. During the synthesis, the iron and chromium oxide layer was formed between the steel and carbonaceous layer. The carbon films exhibited wall-like and spherical morphologies and structures, as characterized by scanning electron microscopy and Raman...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.5
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.3
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Wpływ mikrosfer-frakcji odpadów paleniskowych na mikrostrukturę i wybrane właściwości uzytkowe
PublicationIn this study, the microspheres samples were collected from national power station „Dolna Odra”. In this study, the following materials were used: Portland cement class 32,5R and aggregates of 2-8 and 8-16 fractions and natural sand with a maximum grain size of 2 mm and water. Concrete mixtures were made with microspheres additions of 15%, 25% and 40%. A constant water to binder ratio (w/b) of 0,52 was used throughout the investigation....
-
Application of optical microsphere in fiber optic sensors for measurement of electrochemical processes
Open Research Datainvestigation of the electrochemical processes using micro-sphere fiber-optic sensor with a zinc oxide (ZnO) coating applied by Atomic Layer Deposition method (ALD). The measurements were performed in 1M KNO3 during a decomposition of Bisphenol-A
-
Investigation of temperature changes using a microsphere-based fiber-optic sensor
Open Research DataInvestigation of temperature changes using a microsphere-based fiber-optic sensor with a 200 nm ZnO ALD coating for the purpose of validation the design of the sensor, measurement setup and method of examination of electric cell materials.
-
Modification of microporous polyurethane elastomers with different types of ash—morphological, mechanical, and thermal studies
PublicationIncorporation of wood ash particles from wood gasification into microporous polyurethane elastomers has been investigated and compared to addition of commercially available microspheres resulting from coal burning. Samples were modified with 3 and 6 wt% of fillers. Structure, mechanical, and thermal properties of obtained elastomers were investigated. Incorporation of both types of ash particles decreased the density of polyurethanes...
-
Effect of particle size of aluminosilicate microspheres on the change of hydration heat of cement mortars and selected physical, chemical, and mechanical properties.
Open Research DataThis subject of the work is the study of selected properties of cement mortars containing two fractions of aluminosilicate microspheres with grain size in the range of 125 to 250 μm and from 250 to 500 μm. Mortar mixtures with ordinary Portland cement (OPC 42.5R) and three substitution rates of cement by microspheres, 1.5%, 3.5%, and 5.0%, were investigated....
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...