Filtry
wszystkich: 18
Wyniki wyszukiwania dla: SHEAR FACTOR
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublikacjaPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
Experimental and analytical analysis of punching shear in flat slabs supported on column topped with concrete head
PublikacjaAn experimental laboraatory test of the two series of slab-column elements topped with drop panels of varying sizes is described in this paper. The scope of the paper is to investigate the influence of the drop panel size and stiffness on the behaviour of the connection between the flat slab and the column topped by the concrete head. The impact of the head size and stiffness is analysed analytically and experimentally. The experimental...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Strength parameters of deltaic soils determined with CPTU, DMT and FVT
PublikacjaThis paper presents the results of soil investigation in soft, normally consolidated organic soil in the estuary of Vistula river. The analysis concerns clayey mud and peat layers interbedded with loose to medium-dense sands. Several Cone Penetration Tests with pore water measurement (CPTU), Dilatometer Tests (DMT) and Field Vane Tests (FVT) were performed on the testing site. The cone factor Nkt was estimated using the results...
-
Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling
PublikacjaThis paper examines the stiffness degradation and interface failure load on soft soil–concrete interface. The friction behavior and its variability is investigated. The direct shear tests under constant normal load were used to establish parameters to hyperbolic interface model which provided a good approximation of the data from instrumented piles. Four instrumented piles were used to obtain reference soil–concrete interface behavior....
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublikacjaPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublikacjaIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
The effect of multiaxial geocomposite reinforcement on fatigue performance and crack propagation delay in double-layered asphalt beams
PublikacjaThe presented study investigates the effect of a recently developed multiaxial geocomposite made of polypropylene geogrid and non-woven fabric on the delay of crack propagation, based on four-point bending tests of large asphalt concrete beams – both for reinforced and non-reinforced specimens. Several approaches are described in this study, including analysis of stiffness modulus decrease and analysis of crack propagation using...
-
On rotational instability within the nonlinear six-parameter shell theory
PublikacjaWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...
-
Non-adiabatic Effects in Pressure Drop Calculations in Flow Boiling and Flow Condensation in Minichannels
PublikacjaConsiderations presented in the paper relate both to the case of flow boiling and flow condensation in conventional channels as well as small diameter ones. Authors devoted all the possible attention that the modeling presented is applicable to the whole range of quality variation in both cases of condensation and boiling. The form of two-phase flow multiplier, which is a major factor in modeling presented here, should be capable...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublikacjaThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Textile reinforced concrete members subjected to tension, bending, and in-plane loads: Experimental study and numerical analyses
PublikacjaTextile reinforced concrete has raised increasing research interest during the last years, mainly due to its potential to be used for freeform shell structures involving complex load situations. Yet, most experimental work has focused on test setups with primarily uniaxial loading. In the current work, such setups are complemented with a novel test setup of deep beams, including in-plane bending and shear. Further, nonlinear finite...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublikacjaThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
Fruit seeds oils as a cosmetic emulsions component
PublikacjaThe fruit seeds are known to have a considerable amount of oil and their potential specialty as nutraceutical oil was suggested based on high level of unsaturated triacyglycerols (major fatty acids are linoleic, linolenic, oleic) and a high content of tocols (tocopherols and tocotrienols). In this study the possibility of application fruit seeds oils in W/O and O/W emulsion systems was investigated to find the influence of the...
-
A study on transverse shear correction for laminated sandwich panels
PublikacjaThe paper presents a study on an application of the First Order Shear Deformation Theory in a linear static analysis of elastic sandwich panels. A special attention has been given to the issue of the transverse shear correction. Two benchmark examples of sandwich plate problems with known reference solutions have been selected for a comparative analysis performed with own Finite Element codes. Interesting results allowed for drawing...
-
On the influence of shell element properties on the response of car model in crash test
PublikacjaIt goes without saying that numerical simulations play important role in the modern engineering practice. Contemporary CAD environments combined with FEM solvers, along with computer power of modern processors, give the engineer fast and efficient tool. Ultimately, however it is the user alone who is responsible for the correctness of the results. As long as the FEM calculations remain in the sphere of academic exercise, the inevitable...