Filtry
wszystkich: 20477
-
Katalog
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: BONE TISSUE ENGINEERINGPOLYURETHANECELLSCALCIFICATIONBIOCOMPATIBILITY
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 65 - Tissue image [12030630017633001]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 43 - Tissue image [11290630017293531]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 71 - Tissue image [12030630017644751]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 50 - Tissue image [11290630017298531]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 71 - Tissue image [12030630017642391]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 50 - Tissue image [11290630017296271]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 50 - Tissue image [112906300172911]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS, Bone marrow - Male, 50 - Tissue image [1129063001729491]
Dane BadawczeThis is the histopathological image of HEMATOPOIETIC AND RETICULOENDOTHELIAL SYSTEMS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Giant cell tumor of bone, NOS - Male, 21 - Tissue image [6300730028244641]
Dane BadawczeThis is the histopathological image of BONES, JOINTS AND ARTICULAR CARTILAGE OF LIMBS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Giant cell tumor of bone, NOS - Male, 21 - Tissue image [6300730028249441]
Dane BadawczeThis is the histopathological image of BONES, JOINTS AND ARTICULAR CARTILAGE OF LIMBS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Giant cell tumor of bone, NOS - Male, 21 - Tissue image [6200730021572321]
Dane BadawczeThis is the histopathological image of BONES, JOINTS AND ARTICULAR CARTILAGE OF LIMBS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Giant cell tumor of bone, NOS - Male, 21 - Tissue image [6200730021579291]
Dane BadawczeThis is the histopathological image of BONES, JOINTS AND ARTICULAR CARTILAGE OF LIMBS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Giant cell tumor of bone, NOS - Male, 21 - Tissue image [6300730028246551]
Dane BadawczeThis is the histopathological image of BONES, JOINTS AND ARTICULAR CARTILAGE OF LIMBS tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Marcin Wekwejt dr inż.
OsobyMarcin Wekwejt, absolwent studiów inżynierskich w inż. biomedycznej (2016; Politechnika Bydgoska im. J. i J. Śniadeckich & Collegium Medicum im. L. Rydygiera), studiów magisterskich w inż. mechaniczno-medycznej (2018; Politechnika Gdańska & Gdański Uniwersytet Medyczny) oraz studiów doktoranckich w dyscyplinie inż. materiałowej (2021, Politechnika Gdańska). Uzyskał z wyróżnieniem stopień naukowy doktora nauk inżynieryjno-technicznych...
-
Development of polyurethanes for bone repair
PublikacjaThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Biomechanical properties of 3D-printed bone models
PublikacjaBone lesions resulting from large traumas or cancer resections can be successfully treated by directly using synthetic materials or in combination with tissue engineering methods (hybrid). Synthetic or hybrid materials combined with bone tissue’s natural ability for regeneration and biological adaptation to the directions of loading, allow for full recovery of its biological functions. Increasing interest in new production methods...
-
Three-Dimensional Printing of Bone Models
PublikacjaThe trabecular bone occurs, for example, in the femoral heads. Understanding the phenomenon of bone tissue degeneration can be the basis for the possibility of looking for alternative methods of surgical treatment of bone loss. The paper presents the results of the trabecular bone model, which was produced in additive manufacturing method with fused filament fabrication technology. The verification of the mechanical behavior of...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublikacjaDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublikacjaBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublikacjaThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublikacjaFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition
PublikacjaThe skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related...
-
Soft Tissue Retraction Maneuver in Cone Beam Computed Tomography Prior to Crown-Lengthening Procedure—A Technical Note
PublikacjaBackground: An accurate determination of the biological width and the relationship of the cemento-enamel junction with the border of the alveolar bone is crucial during a clinical crown-lengthening (CCL) procedure. The aim of this study was to present a technical note about the retraction techniques in cone beam computed tomography (CBCT) prior to CCL, highlighting the significant enhancement in procedural accuracy and predictability...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublikacjaBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Titania Nanofiber Scaffolds with Enhanced Biointegration Activity—Preliminary In Vitro Studies
PublikacjaThe increasing need for novel bone replacement materials has been driving numerous studies on modifying their surface to stimulate osteogenic cells expansion and to accelerate bone tissue regeneration. The goal of the presented study was to optimize the production of titania-based bioactive materials with high porosity and defined nanostructure, which supports the cell viability and growth. We have chosen to our experiments TiO2...
-
The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
PublikacjaThis study compares the strength of the native bone-cement bond and the old-new cement bond under cyclic loading, using third generation cementing technique, rasping and contamination of the surface of the old cement with biological tissue. The possible advantages of additional drilling of the cement surface is also taken into account. Femoral heads from 21 patients who underwent a total hip arthroplasty performed for hip arthritis...
-
A new finite element with variable Young's modulus
PublikacjaThe Finite Element Method (FEM) is a numerical technique that is well-established in the field of engineering. However, in biological sciences, it is justtaking its first steps. Bone tissue is an example of biological material which isexposed to high loads in its natural environment. Practically every movementof the body results in changing stress levels in the bone. Nature copes with thisvery well but when human intervention is...
-
Bone healing under different lay‐up configuration of carbon fiber‐reinforced PEEK composite plates
PublikacjaSecondary healing of fractured bones requires an application of an appropriate fixa-tor. In general, steel or titanium devices are used mostly. However, in recent years,composite structures arise as an attractive alternative due to high strength to weightratio and other advantages like, for example, radiolucency. According to Food andDrug Administration (FDA), the only unidirectionally reinforced composite allowed tobe implanted...
-
Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials
PublikacjaThe important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are...
-
Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications
PublikacjaOne of the biggest challenges in tissue engineering is the manufacturing of porous structures that are customized in size and shape and that mimic natural bone structure. Additive manufacturing is known as a sufficient method to produce 3D porous structures used as bone substitutes in large segmental bone defects. The literature indicates that the mechanical and biological properties of scaffolds highly depend on geometrical features...
-
Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine
PublikacjaNovel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent...
-
Modifiers for Medical Grade Polymeric Systems used in FDM 3D Printing - Short Review
PublikacjaFDM 3D printing could find an application in the wide range of biomedical applications. Unfortunately, the quantity of polymeric biomaterials suitable to processing into filaments is limited. The most frequently used biomaterials for medical constructs such as bone grafts, soft tissue scaffolds or another DDS include PCL, PLA, PVA, HPC, EVA copolymer, EC and TPUs. Various modifiers such as TCP, HA, TEC, MMC could be applicated...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublikacjaPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Modeling of light propagation in canine gingiva
PublikacjaThis study is a preliminary evaluation of the effectivenes of laser-based surgery of maxillary and mandibular bone in dogs. Current methods of gingivial surgery in dogs require the use of general anaesthesia.1, 2 The proposed methods of laser surgery can be performed on conscious dogs, which substantially reduces the associated risks. Two choices of lasers, Nd:YAG and a 930 nm semiconductor lasers were evaluated. The former is...
-
Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review
PublikacjaNanotechnology with bionanomaterials have tremendous potential to enhance and utilize for nutrient and bioactive absorption, drug delivery systems, pharmaceutical, and nutraceutical field through various applications. Cellulose nanomaterials are green materials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made...
-
IN VIVO DEGRADATION OF BIOMATERIALS
PublikacjaThe material designed to be introduced into the human tissue should be biocompatible and biofunctional. Unless it is so, the body may respond to the implant in different ways. An inflammation reaction may appear such as: parting of items of the implant surface resulting from fraction or pressure. The condition of the surface has an important influence on the usefulness of the implant. The required values depend on the implant function...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublikacjaConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
Bioactive core material for porous load-bearing implants
PublikacjaSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods
PublikacjaNowadays, titanium and its alloys are widely used materials in implantology. Nevertheless, the greatest challenge is still its appropriate surface treatment in order to induce optimal properties, which facilitates formation of a permanent bond between the implant and human tissue. The use of electrochemical treatment such as anodic oxidation or plasma electrolytic oxidation allows for the production of porous coating that mimics...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Wpływ wysokiej osteotomii piszczelowej na mechanikę stawu kolanowego
PublikacjaW rozprawie podjęto próbę weryfikacji wpływu zabiegu chirurgicznego wysokiej osteotomii piszczelowej na mechanikę stawu kolanowego. Po wykonanym przeglądzie literatury, postawiono trzy hipotezy, które poddano weryfikacji na drodze badań numerycznych. Otrzymane wyniki zwalidowano poprzez badania nacisków powierzchniowych występujących w stawach kolanowych świni domowej, prowadzonych na maszynie do jednoosiowego ściskania. Praca...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublikacjaFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Tensile modulus of human orbital wall bones cut in sagittal and coronal planes
PublikacjaIn the current research, 68 specimens of orbital superior and/or medial walls taken from 33 human cadavers (12 females, 21 males) were subjected to uniaxial tension untill fracture. The samples were cut in the coronal (38 specimens) and sagittal (30 specimens) planes of the orbital wall. Apparent density (ρapp), tensile Young’s modulus (E-modulus) and ultimate tensile strength (UTS) were identified. Innovative test protocols were...
-
Influence of Ultrasound on the Characteristics of CaP Coatings Generated Via the Micro-arc Oxidation Process in Relation to Biomedical Engineering
PublikacjaOver the past decade, bone tissue engineering has been at the core of attention because of an increasing number of implant surgeries. The purpose of this study was to obtain coatings on titanium (Ti) implants with improved properties in terms of biomedical applications and to investigate the effect of ultrasound (US) on these properties during the micro-arc oxidation (MAO) process. The influence of various process parameters, such...
-
Preparation, characterization, and manufacturing of new polymeric materials for 3D printing for medical applications
PublikacjaThis work concerns the synthesis, formation, and characteristics of new filaments for 3D printing in FDM™/FFF technology for medical purposes. Two types of filaments were developed, i.e. degradable polyurethane and biodegradable polylactide-starch. The influence of the 3D printing process on selected filament properties was investigated. A detailed analysis of the filament formation process by the extrusion method was carried out,...
-
Polysaccharide-based Nanocomposites for Biomedical Applications: A Critical Review
PublikacjaPolysaccharides (PSA) are taking specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties is known as the main drawback of PSA, which highlights need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use have not been reviewed. Herein we critically reviewed application...
-
Structural investigations of niobium-doped bioactive calcium-phosphate glass-ceramics by means of spectroscopic studies
PublikacjaSynthetic calcium-phosphate based glasses and glass-ceramics play a crucial role in the development of tissue engineering. These materials have a high biocompatibility with biological analogues, excellent ability to undergo varying degrees of resorbability and due to their non-toxicity and relatively high bioactivity they are commonly used as bone and dental implants. A substantial research effort is devoted to improve synthetic...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublikacjaThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublikacjaThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...