Filtry
wszystkich: 1231
-
Katalog
- Publikacje 859 wyników po odfiltrowaniu
- Czasopisma 10 wyników po odfiltrowaniu
- Konferencje 5 wyników po odfiltrowaniu
- Osoby 42 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 29 wyników po odfiltrowaniu
- Wydarzenia 4 wyników po odfiltrowaniu
- Dane Badawcze 279 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: BIG DATA DEEP LEARNING REMOTE MEDICAL DIAGNOSTIC
-
Quantitative Active Dynamic Thermal IR-Imaging and Thermal Tomography in Medical Diagnostic
PublikacjaPrinciples of Active dynamic thermal (ADT) IR-imaging and Thermal Tomography are described in details. Basic medical applications of this new modality are also discussed.
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Scientific tools for collecting and analysing medical data in rhinology.
Publikacja -
Chest Injuries Based on Medical Rescue Team Data
Publikacja -
AGAR a Microbial Colony Dataset for Deep Learning Detection
Publikacja -
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publikacja -
JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY
Czasopisma -
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublikacjaControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublikacjaThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
A survey of automatic speech recognition deep models performance for Polish medical terms
PublikacjaAmong the numerous applications of speech-to-text technology is the support of documentation created by medical personnel. There are many available speech recognition systems for doctors. Their effectiveness in languages such as Polish should be verified. In connection with our project in this field, we decided to check how well the popular speech recognition systems work, employing models trained for the general Polish language....
-
Deep learning-based waste detection in natural and urban environments
Publikacja -
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
Coastline change-detection method using remote sensing satellite observation data
PublikacjaCoastal zones are not only the fundaments for local economics based on trade, shipping and transport services, but also a source of food, energy and resources. Apart from offering diverse opportunities for recreation and tourism, coastal zones provide protection against storms and other meteorological disturbances. Environmental information is also essential because of the direct influence on a country’s maritime zones, which are...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
A survey of medical researchers indicates poor awareness of research data management processes and a role for data librarians
Publikacja -
Deep learning approach for delamination identification using animation of Lamb waves
Publikacja -
Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves
Publikacja -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publikacja -
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublikacjaThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Learning from examples with data reduction and stacked generalization
Publikacja -
Stacking-Based Integrated Machine Learning with Data Reduction
Publikacja -
Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat
PublikacjaThe Biebrza River valley (NE Poland) is distinguished by largely intact, highly natural vegetation patterns and very good conservation status of wetland ecosystems. In 20132014, studies were conducted in the upper Biebrza River basin to develop a remote sensing method for alkaline fen classification a protected Natura 2000 habitat (code 7230) using remote sensing technologies. High resolution airborne true colour (RGB) and...
-
An ML-extended conceptual framework for implementing temporal big data analytics in organizations to support their agility
Publikacja -
Improved estimation of dynamic modulus for hot mix asphalt using deep learning
Publikacja -
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care
Publikacja -
An A-Team approach to learning classifiers from distributed data sources
Publikacja -
An A-Team Approach to Learning Classifiers from Distributed Data Sources
Publikacja -
Deep Data Analysis of a Large Microarray Collection for Leukemia Biomarker Identification
Publikacja -
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publikacja -
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Jerzy Proficz dr hab. inż.
OsobyJerzy Proficz – dyrektor Centrum Informatycznego Trójmiejskiej Akademickiej Sieci Komputerowej (CI TASK) na Politechnice Gdańskiej. Uzyskał stopień naukowy doktora habilitowanego (2022) w dyscyplinie: Informatyka techniczna i telekomunikacja. Autor i współautor ponad 50 artykułów w czasopismach i na konferencjach naukowych związanych głównie z równoległym przetwarzaniem danych na komputerach dużej mocy (HPC, chmura obliczeniowa). Udział...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publikacja -
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publikacja -
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publikacja -
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publikacja -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publikacja -
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Stacking and rotation-based technique for machine learning classification with data reduction
Publikacja -
Learning from Imbalanced Data Using Over-Sampling and the Firefly Algorithm
Publikacja