Wyniki wyszukiwania dla: NONLINEAR ELASTICITY
-
On nonlinear dilatational strain gradient elasticity
PublikacjaWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity
PublikacjaWe discuss connections between the strong ellipticity condition and the infinitesimal instability within the nonlinear strain gradient elasticity. The strong ellipticity (SE) condition describes the property of equations of statics whereas the infinitesimal stability is introduced as the positive definiteness of the second variation of an energy functional. Here we establish few implications which simplify the further analysis...
-
ON DYNAMICS OF ELASTIC NETWORKS WITH RIGID JUNCTIONS WITHIN NONLINEAR MICRO-POLAR ELASTICITY
PublikacjaWithin the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider a three-dimensional elastic network made of three families of elastic fibers connected...
-
Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment
PublikacjaStress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature...
-
Victor Eremeev prof. dr hab.
Osoby -
On the correspondence between two- and three-dimensional Eshelby tensors
PublikacjaWe consider both three-dimensional (3D) and two-dimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthe-thickness...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublikacjaThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublikacjaHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublikacjaIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
The impact of methods the stochastic analysis on swimming safety of multihull floating units (Part 2)
PublikacjaIn part 2 the equations of the catamaran motion were divided into the system of two groups not conjugated with themselves containing the mutually conjugated equations. The feedback is obtained by the linear and nonlinear coefficients of dampening and coefficients of hydrostatic elasticity. The first group includes the symmetric movements (longitudinal movements), and the second group includes the antisymmetric movements (transverse)....
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublikacjaIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublikacjaThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures
PublikacjaWe focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during post-buckling. An effective flexomagnetic property is also taken into account. The modelled sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms result in a mathematical model based on the nonlocal strain gradient elasticity approach (NSGT). Due to possible large deformations within a post-buckling phenomenon,...
-
The impact of methods the stochastic analysis on swimming safety of multihull floating units (Part1)
PublikacjaThe presented article concerns the application of the methods of the stochastic analysis to solve differential equations for multihull catamaran-type floating unit. There was described the continuous process of Markov and the method of equations of Focker-Planck-Kolmogorov. The analysis of dynamics of the multihull unit was carried out with the assumption that the system model is the linear model with six degrees of freedom, on...
-
On Nonlinear Dynamic Theory of Thin Plates with Surface Stresses
PublikacjaWe discuss the modelling of dynamics of thin plates considering surface stresses according to Gurtin–Murdoch surface elasticity. Taking into account the surface mass density we derive the two-dimensional (2D) equations of motion. For the reduction of the three-dimensional (3D) motion equations to the 2D ones we use the trough-the-thickness integration procedure. As a result, the 2D dynamic parameters of the plate depend not only...
-
Measurements of raising of 160EC pantograph type
Dane BadawczeIn this description the results of the experiment and also simulation performed on the total assembly of the 160 EC pantograph type is given. Multibody dynamics of pantograph rising due to external torque and forces are measured for parameter validation of the pantograph model.
-
Linear viscoelastic transversely isotropic model based on the spectral decomposition of elasticity tensors
PublikacjaThe linear viscoelasticity is still a useful model in the engineering for studying the behavior of materials loaded with different loading rates (frequencies). Certain types of materials reveal also an anisotropic behavior: fiber reinforced composites, asphalt concrete mixtures, or wood, to name a few. In general, researchers try to identify experimentally the dependence of engineering constants like: directional Young’s moduli...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublikacjaIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
Mohammad Malikan dr inż.
OsobyMohammad Malikan studied Ph.D. at the Department of Mechanics of Materials and Structures at the Gdańsk University of Technology. He was the first person who graduated in the new form of the doctoral education system of Poland (Doctoral School). He has worked as a mechanical engineer and designer for several years in CAD/CAE fields in various industries, such as feed production lines, machinery, elevator, oil, etc. His main research...
-
A Review of Hyperelastic Constitutive Models for Dielectric Elastomers
PublikacjaDielectric elastomers are smart materials that are essential components in soft systems and structures. The core element of a dielectric elastomer is soft matter, which is mainly rubber-like and elastomeric. These soft materials show a nonlinear behaviour and have a nonlinear strain-stress curve. The best candidates for modelling the nonlinear behaviour of such materials are hyperelastic strain energy functions. Hyperelastic functions...
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
Local material symmetry group for first- and second-order strain gradient fluids
PublikacjaUsing an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients....
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublikacjaWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
Nonlinear strain gradient and micromorphic one-dimensional elastic continua: Comparison through strong ellipticity conditions
PublikacjaWe discuss the strong ellipticity (SE) conditions for strain gradient and micromorphic continua considering them as an enhancement of a simple nonlinearly elastic material called in the following primary material. Recently both models are widely used for description of material behavior of beam-lattice metamaterials which may possess various types of material instabilities. We analyze how a possible loss of SE results in the behavior...