dr inż. Paweł Jakóbczyk
Employment
- Assistant professor at Department of Metrology and Optoelectronics
Publications
Filters
total: 23
Catalog Publications
Year 2024
-
Diamond-Based Supercapacitors with Ultrahigh Cyclic Stability Through Dual-Phase MnO2-Graphitic Transformation Induced by High-Dose Mn-Ion Implantation
PublicationWhile occasionally being able to charge and dischargemore quickly than batteries, carbon-based electrochemical supercapacitors(SCs) are nevertheless limited by their simplicity of processing, adjustableporosity, and lack of electrocatalytic active sites for a range of redox reactions.Even SCs based on the most stable form of carbon (sp3carbon/diamond)have a poor energy density and inadequate capacitance retention during longcharge/discharge...
-
Enhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applications
PublicationAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a prom- ising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical sur- faces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures...
-
Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance
PublicationThis study presents the preparation and characterization of few-layer black phosphorus (FLBP) chitosan electrodes by controlled electrochemical deposition of chitosan nanoparticles on FLBP-modified glassy carbon electrodes. FLBP was prepared by solvent-assisted exfoliation of bulk BP and was further modified with chitosan forming together a nanocomposite, including easy cross-linking with nanomaterials and film-forming properties....
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublicationTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
Year 2023
-
Investigation of the Few‐Layer Black Phosphorus Degradation by the Photonic Measurements
PublicationFew-layer black phosphorus (FLBP) is a 2D material that gains worldwide interest for its possible applications, mainly in electronics and optoelec-tronics. However, as FLBP is prone to a degradation process under envi-ronmental conditions, there is a need for a monitoring method allowing investigation of its surface quality. Among many techniques, optoelectronic ones have unique advantages of fast response, non-contact, and non-invasive...
-
Tailoring optical constants of few-layer black phosphorus coatings: Spectroscopic ellipsometry approach supported by ab-initio simulation
Publication2D black phosphorus (BP) has attracted extensive attention as an anisotropic platform for novel optoelectronic and polarizing optics applications. Insight into the factors that tune the optical and polarizing properties of 2D BP reveals their essential influence on BP-based photonic and optoelectronic devices. In this work, studies of the optical constants of few-layer black phosphorus coatings are studied and discussed, with particular...
Year 2022
-
A novel hierarchically-porous diamondized polyacrylonitrile sponge-like electrodes for acetaminophen electrochemical detection
PublicationA novel composite electrode material consisting of tangled fibrous polyacrylonitrile-based hierarchically-struc- tured nanocomposites has been produced by wet-spinning, carbonized and decorated with a carbon nano- architecture by microwave plasma-enhanced chemical vapor deposition and investigated as a metal-free electrode for the enhanced electrochemical detection of acetaminophen. Surprisingly, the hierarchical fiber ar- chitecture...
-
Diamond protection for reusable ZnO coated fiber-optic measurement head in optoelectrochemical investigation of bisphenol A
PublicationDue to the global problem with plastic contaminating the environment, with bisphenol A (BPA) being one of the highest demand, effective monitoring and purification of the pollutants are required. The electrochemical methods constitute a good solution but, due to polymerization of electrochemical oxidation bisphenol A products and their adsorption to the surfaces, measurement head elements are clogged by the formed film. In this...
-
Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments
PublicationCarbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modi- fication processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased...
-
Enhanced stability of electrochemical performance of few-layer black phosphorus electrodes by noncovalent adsorption of 1,4-diamine-9,10-anthraquinone
PublicationIn this paper, the novel noncovalent functionalisation strategy of few-layer black phosphorus by 1,4-diamine-9,10-anthraquinone electrode was proposed and studied. The degradation of few-layer black phosphorus under exposure to oxygen and water is a significant obstacle to its use as an electroanalytical electrode. The anthraquinone compound adsorbed at black phosphorus flakes results in improved prevention of the phosphorus surface...
-
Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors
PublicationCarbon (sp3)-on-carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon-on-carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demon-strates the scalable fabrication of flexible laser-induced graphene (LIG)-boron doped diamond nanowall (BDNW) hybrid nanostructures...
Year 2021
-
Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate
PublicationNanomaterials and assemblies of the aforementioned into complex architectures constitute an opportunity to design efficient and selective solutions to wide spread and emerging environmental issues. The limited disposal of organic matter in modern landfills generates extremely concentrated leachates characterised by high concentrations of refractory compounds. Conventional biochemical treatment methods are unsuitable, while advanced...
-
Cytocompatibility of stabilized black phosphorus nanosheets tailored by directly conjugated polymeric micelles for human breast cancer therapy
PublicationThe novel procedure of few-layer black phosphorus (FLBP) stabilization and functionalisation was here proposed. The cationic polymer PLL and non-ionic PEG have been involved into encapsulation of FLBP to allow sufficient time for further nanofabrication process and overcome environmental degradation. Two different spacer chemistry was designed to bind polymers to tumor-homing peptides. The efficiency of functionalisation was examined...
-
Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes
PublicationLocust Bean Gum (LBG, carob bean gum) was investigated as an environmentally friendly, natural, and water-soluble binder for cathode (LFP) and anode (LTO) in lithium-ion batteries (Li-ion). For the frst time, we show LBG as an electrode binder and compare to those of the most popular aqueous (CMC) and conventional (PVDF) binders. The electrodes were characterized using TGA/DSC, the galvanostatic charge–discharge cycle test, cyclic...
-
Low-coherence photonic method of electrochemical processes monitoring
PublicationWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifcally, we combined a fber-optic Fabry– Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-ofprinciple of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond flm...
-
Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards Haemophilus Influenzae pathogen biosensing devices
PublicationIn this paper, various passivation schemes were applied at few-layer black phosphorus (FLBP) to achieve covalent functionalisation with 4-azidobenzoic acid, improving its electrochemical response intended for analytical and biosensing applications. The thermal and microwave assisted modification procedures in toluene and dime-thylformamide resulted in high reversibility of reactions on functionalised FLBP using a ferricyanide/ferrocya-nide...
-
Measurements of the optical and thermal properties of the 2D black phosphorus coating
PublicationBlack phosphorus is a 2D material, which properties are still being discovered. In this paper, the sensitivity to the temperature of a few-layer black phosphorus coating deposited, on the surface of a microsphere-based fiber-optic sensor, by a dip-coating method is presented. The coating was investigated after 2, 3, and 5 deposition cycles and during temperature growth from 50 °C to 300 °C in an interferometric setup. The intensity...
-
Photoluminescence as a probe of phosphorene properties
PublicationHere, we provide a detailed evaluation of photoluminescence (PL) as a comprehensive tool for phosphorene characterization with the emphasis on a prominent quantitative role of PL in providing fingerprint-like features due to its extreme sensitivity to the band structure details, anisotropy, disorder, external fields, etc. Factors such as number of layers, dimensionality, structural and chemical disorder, and environmental factors...
-
Self-assembly of vertically oriented graphene nanostructures: multivariate characterisation by Minkowski functionals and fractal geometry
PublicationThe enormous self-assembly potential that graphene and its derived layered materials offer for responding to the contemporary environmental challenges has made it one of the most investigated materials. Hence, tuning its extraordinary properties and understanding the effect at all scales is crucial to tailoring highly customised electrodes. Vertically oriented graphene nanostructures, also known as carbon nanowalls (CNWs), due...
Year 2020
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
Year 2019
-
Optical absorption and anisotropy of phosphorene flakes
Publication -
Polarization-dependent optical absorption in phosphorene flakes
PublicationThe interest of 2D materials is constantly increasing because of their very attractive mechanical, electrical and optical parameters. They have been used in many applications, e.g. photodetectors, sensors, modulators, insulators. One of the recently discovered 2D materials is phosphorene. In contrast to graphene, phosphorene has a direct bandgap tuned by numbers of layers in the 2D structure. The phosphorene flakes are strongly...
seen 2055 times