Filters
total: 696
filtered: 567
Search results for: DIELECTRIC RESONATOR ANTENNAS.
-
60 GHz Microstrip Van Atta Arrays for Millimeter Wave Identification and Localization
PublicationIn this paper performance comparison of co-polarized and cross-polarized microstrip Van Atta arrays working in the 60 GHz frequency range is presented. They can be treated as simple chipless RFID tags with frequency response based identification. Tags with three different nominal resonance frequencies of 57, 62 and 67 GHz are designed by scaling optimized base model. Designed 62 GHz co-polarized and cross-polarized arrays with...
-
Design of a Cellular Dual-Band Sticker Antenna for Thickness-Independent 3D-Printed Substrates
PublicationAdditive manufacturing technology provides high flexibility in designing custom enclosures for prototype devices such as nodes of distributed sensor networks. Although integration of components is desired from the perspective of sensor mobility, it might negatively affect the performance of radio-connectivity due to couplings between the antenna and system peripherals, as well as other unaccounted effects of the 3D printed enclosure....
-
RSS-Based DoA Estimation Using ESPAR Antenna Radiation Patterns Spline Interpolation
PublicationIn this paper, it is shown how power pattern crosscorrelation (PPCC) algorithm, which relies on received signal strength (RSS) values recorded at electronically steerable parasitic array radiator (ESPAR) antenna output port, used for direction-of-arrival (DoA) estimation, can easily be improved by applying spline interpolation to radiation patterns recorded in the calibration phase of the DoA estimation process. The proposed method...
-
Propagation Characteristics of Partial Discharges in an Oil-Filled Power Transformer
PublicationPower transformers are among the most important assets in the power transmission and distribution grid. However, they suffer from degradation and possible faults causing major electrical and financial losses. Partial discharges (PDs) are used to identify the insulation health status and their degradation level. PDs are incipient, low-magnitude faults caused by localized dielectric breakdown. Those activities emit signals in many...
-
Fabrication of La-Doped Bi4Ti3O12 Ceramics
PublicationLa-modified Bi4Ti3O12 is a typical ferroelectric, piezoelectric and electro-optic material, having relatively low coercive field, low dielectric constant, high Curie temperature and high breakdown strength. Goal of the present research was to apply mixed oxide method for fabrication of BiTLax ceramics, study its chemical composition, crystalline structure and microstructure. The compound BiTLax for x=0, 0.25, 0.5, 0.75 ceramic...
-
Circularly Polarized Metalens Antenna Design for 5G NR Sub-6 GHz Communication Systems
Publication5G NR (new radio) FR1 range refers to as Sub-6GHz band (410MHz to 7125MHz and 3.4GHz to 6GHz). In this paper, the frequency range of interest is from 3.4 to 6GHz, as many cellular companies are focusing on this Sub-6GHz band. A wideband circularly polarized (CP) antenna radiator is designed with diamond shape patches, fed by a microstrip line at the bottom through a rectangular shape wide slot on a ground plane. The proposed CP...
-
Determination of the tram track axis using a multi receiver GNSS measurement system
PublicationThis article refers to research, that has been conducted by an interdisciplinary research team from the Gdańsk University of Technology and the Maritime University in Gdynia since 2009. These investigation concerns the determination of a railway track axis using the mobile satellite measurement technique. Following the dynamic development of GNSS techniques, that could be seen in the last decade, the team carried out further experiments...
-
Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era
PublicationElectromagnetic simulation and electronic design automation (EDA) play an important role in the design of 5G antennas and radio chips. The simulation challenges include electromagnetic effects and long simulation time and this paper focuses on simulation software based on finite-element method (FEM). The state-of-the-art EDA software using novel computational techniques based on FEM can not only accelerate numerical analysis, but...
-
Low-Cost Open-Hardware System for Measurements of Antenna Far-Field Characteristics in Non-Anechoic Environments
PublicationExperimental validation belongs to the most important steps in the development of antenna structures. Measurements are normally performed in expensive, dedicated facilities such as anechoic chambers, or open-test sites. A high cost of their construction might not be justified when the main goal of antenna verification boils down to demonstration of the measurement procedure, or rough validation of the simulation models used for...
-
Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering
PublicationIn this paper, it has been shown, how electronically steerable parasitic array radiator (ESPAR) antenna, in which beam steering is done in a simple way, can be used for directionof- arrival (DoA) estimation of an unknown signal impinging the antenna. The concept is based on an ESPAR antenna having twelve parasitic elements, in which beam switching is realized by RF switches providing required loads to its parasitic elements. Numerical...
-
Analysis of the Impact of Galileo Observations on the Tropospheric Delays Estimation
PublicationIn this study we present analysis of the impact of Galileo observations on the ZTD and tropospheric gradients estimation. The tropospheric parameters were obtained in various scenarios, which differ from each other only in used satellite systems: Galileo-only, GPS-only, GPS/Galileo, GPS/GLONASS and GPS/GLONASS/Galileo. Then, comparative analysis between Galileo-only solution and the other ones, was carried out. As a reference,...
-
Highly-Miniaturized Microfluidically-Based Frequency Reconfigurable Antenna Diplexer Employing Half-Mode SIRW
PublicationThis article introduces a super-miniaturized frequency reconfigurable antenna diplexer based on microfluidic techniques. The proposed structure is developed using a half-mode substrate-integrated rectangular waveguide (HMSIRW). The antenna architecture consists of two HMSIRW cavities loaded with L-shaped slots, which are excited by two microstrip feedlines to realize two distinct radiating frequency bands. The footprint of the...
-
Immittance Studies of Bi6Fe2Ti3O18 Ceramics
PublicationResults of studies focusing on the electric behavior of Bi6Fe2Ti3O18 (BFTO) ceramics are reported. BFTO ceramics were fabricated by solid state reaction methods. The simple oxides Bi2O3, TiO2, and Fe2O3 were used as starting materials. Immittance spectroscopy was chosen as a method to characterize electric and dielectric properties of polycrystalline ceramics. The experimental data were measured in the frequency range D = (101–107)...
-
Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics
PublicationThe investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM). The morphology of BaTi0.96Si0.04O3 (BTSi04) ceramics was characterised by means of a scanning electron microscopy (SEM). It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition...
-
Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications
PublicationIn this paper, we have introduced a low-profile electronically steerable parasitic array radiator (ESPAR) antenna that can successfully be used to estimate the direction-of-arrival (DoA) of incoming signals in wireless sensor network (WSN) applications, in which the height of the complete antenna has to be low. The proposed antenna is over three times lower than high-profile ESPAR antenna designs currently available in the literature...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
On EM-driven size reduction of antenna structures with explicit constraint handling
PublicationSimulation-driven miniaturization of antenna components is a challenging task mainly due to the presence of expensive constraints, evaluation of which involves full-wave electromagnetic (EM) analysis. The recommended approach is implicit constraint handling using penalty functions, which, however, requires a meticulous selection of penalty coefficients, instrumental in ensuring optimization process reliability. This paper proposes...
-
Topological modifications for performance improvement and size reduction of wideband antenna structures
PublicationCompact antennas belong to the key components of modern communication systems. Their miniaturization is often achieved by introducing appropriate topological changes such as simple ground plane slots or tapered feeds. More sophisticated modifications are rarely considered in the literature because they normally lead to significant increase of the number of tunable parameters, which makes the antenna design process more challenging....
-
Electromagnetic curtain effect and tunneling properties of multilayered periodic structures
PublicationArtykuł przedstawia analizę rozpraszania fali elektromagnetycznej na wielowarstwowych strukturach periodycznych. W analizowanych strukturach zaobserwowano efekt tunelowania fali oraz efekt przestrajania pasm zaporowych/przepustowych (efekt kurtyny elektromagnetycznej)
-
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
Publication -
Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna
PublicationIn this letter, a structure of a small ultra-wideband (UWB) monopole antenna, its design optimization procedure as well as experimental validation are presented. According to our approach, antenna compactness is achieved by means of a meander line for current path enlargement as well as the two parameterized slits providing additional degrees of freedom that help to ensure good impedance matching. For the sake of reliability, the...
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Automated Reduced Model Order Selection
PublicationThis letter proposes to automate generation of reduced-order models used for accelerated -parameter computation by applying a posteriori model error estimators. So far,a posteriori error estimators were used in Reduced Basis Method (RBM) and Proper Orthogonal Decomposition (POD) to select frequency points at which basis vectors are generated. This letter shows how a posteriori error estimators can be applied to automatically select...
-
Analytical Expression for the Time-Domain Discrete Green's Function of a Plane Wave Propagating in the 2-D FDTD Grid
PublicationIn this letter, a new closed-form expression for the time-domain discrete Green's function (DGF) of a plane wave propagating in the 2-D finite-difference time-domain (FDTD) grid is derived. For the sake of its verification, the time-domain implementation of the analytic field propagator (AFP) technique was developed for the plane wave injection in 2-D total-field/scattered-field (TFSF) FDTD simulations. Such an implementation of...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Design and experimental verification of multi-layer waveguide using pin/hole structure
PublicationThis study presents a novel technique for minimizing RF leakage in metallic hollow waveguides fabricated using the multilayer split-block method. By integrating a pin/hole wall into the split-block multilayers, a substantial reduction of RF leakage can be achieved while reducing the circuit size and mitigating the performance variations. To validate the proposed approach, a slot antenna fed by single ridge waveguide has been prototyped...
-
Dual-Polarized Wideband Bandpass Metasurface-Based Filter
PublicationThis paper presents a novel metasurface-based bandpass filter. The structure is realized by simply patterning a double-sided AD250 substrate, and does not require any vias or insertion of lumped elements. The top layer is an annular- aperture-array with multiple inner conductors, whereas the bottom layer is a first-order Hilbert-curve array. FEM-based simulation results of the filter are obtained using HFSS. The experimental validation...
-
A Series-Inclined-Slot-Fed Circularly Polarized Antenna for 5G 28-GHz Applications
PublicationThis letter presents the design of a single-point-fed, geometrically simple circularly polarized (CP) antenna for 28 GHz Ka-band applications. The proposed antenna is based on a straight microstrip line printed on one side and coupled with the nearly square patches through a 45-degree inclined V-shape slot aperture on the other side. In order to generate circular polarization, the fundamental radiating mode is degenerated at a...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
FPGA Acceleration of Matrix-Assembly Phase of RWG-Based MoM
PublicationIn this letter, the field-programmable-gate-array accelerated implementation of matrix-assembly phase of the method of moments (MoM) is presented. The solution is based on a discretization of the frequency-domain mixed potential integral equation using the Rao-Wilton-Glisson basis functions and their extension to wire-to-surface junctions. To take advantage of the given hardware resources (i.e., Xilinx Alveo U200 accelerator card),...
-
High-Gain Compact Circularly Polarized X-Band Superstrate Antenna for CubeSat Applications
PublicationIn this letter, a concept of high-gain circularly polarized X-band antenna employing a partially reflecting surface (PRS) has been presented. In the initial antenna analysis, the influence of parasitic elements size in the PRS structure on antenna radiation pattern parameters has been investigated and the optimal arrangement of the elements has been identified. The proposed antenna provides wide bandwidth of return loss above 10...
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublicationIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
A Simple-Topology Compact Broadband Circularly Polarized Antenna With Unidirectional Radiation Pattern
PublicationIn this letter, a geometrically simple, reflector-backed single-point-fed circularly polarized (CP) antenna with unidirectional radiation pattern is presented. The structure comprises a simple coplanar waveguide (CPW) feeding circuit with an open slot etched on one side of the coplanar ground. The enhanced CP bandwidth is obtained by combining the loop mode, the slot mode, and the asymmetrical configuration of the coplanar ground...
-
A Compact Circularly Polarized Antenna With Directional Pattern for Wearable Off-Body Communications
PublicationThis letter presents a geometrically simple and compact circularly polarized (CP) antenna with unidirectional radiation characteristics for off-body communications. The proposed antenna is based on a microstrip line monopole extension from a coplanar waveguide (CPW) and a protruded stub from one side of the coplanar ground plane along the length of the monopole. The orthogonal components of equal amplitudes required for circular...
-
A New Type of Macro-Elements for Efficient Two-Dimensional FEM Analysis
PublicationThis letter deals with a model order reduction technique applicable for driven and eigenvalue problems solved using the finite element method (FEM). It allows one to efficiently compute electromagnetic parameters of structures comprising small features that require strong local mesh refinement. The subdomains of very fine mesh are separated from the global domain as so called macro-elements that undergo model reduction. The macro-elements...
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublicationThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
Scattering in a section of ferrite coupled microstrip lines: theory and application in nonreciprocal devices
PublicationPrzeprowadzono analizę pełnofalową sekcji sprzężonych ferrytowych linii mikropaskowych wykorzystującą w rozwinięciu pola em fale prowadzone w izotropowych złączach wejściowych sekcji oraz jej fajl ferrytowych. W wyniku określono macierz S sekcji. Przeprowadzono modelowanie własności rozproszenia układu oraz symulację parametrów transmisyjnych układów niewzajemnych projektowanych z wykorzystaniem proponowanego układu ferrytowego.
-
Isolator using a ferrite-coupled-lines gyrator
PublicationPrzedstawiono koncepcję nowego typu gyratora wykonywanego poprzez zwarcie lub rozwarcie ferrytowych linii sprzężonych (FCL). Redukując w taki sposób macierz rozproszenia (S) sekcji FCL określono macierz S gyratora oraz procedurę jego projektowania. Poprzez odpowiednie wprowadzenie warstwy rezystywnej do układu gyratora zaprojektowano nowy układ isolatora typu FCL oraz podano metodykę jego projektowania. Koncepcje proponowanych...
-
On the approximation of the UWB dipole elliptical arms with stepped-edge polygon
PublicationA simple method of approximation of the ellipticalpatch with stepped-edge polygon is proposed as an introductionto wider studies over the planar ultrawideband (UWB) antennas.The general idea is to replace the elliptical patch with an equivalentpolygonal patch, with minimum loss in the performance. Theprinciples of the proposed method are presented in this letter, aswell as the results of performed numerical studies and its experimentalverification....
-
Fast implementation of FDTD-compatible green's function on multicore processor
PublicationIn this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the FDTD simulations of radiation and scattering problems. Unfortunately, the new DGF expression involves binomial coefficients, whose computations...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublicationIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Two-Row ESPAR Antenna with Simple Elevation and Azimuth Beam Switching
PublicationIn this letter, we propose a two-row electronically steerable parasitic array radiator (ESPAR) antenna designed for direction of arrival (DoA) estimation in Internet of Things (IoT) applications relying on simple microcontrollers. The antenna is capable of elevation and azimuth beam switching using a simple microcontroller-oriented steering circuit and provides 18 directional radiation patterns, which can be grouped in 3 distinctive...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
Highly-Miniaturized Self-Quadruplexing Antenna Based on Substrate-Integrated Rectangular Cavity
PublicationThis paper introduces a novel self-quadruplexing antenna (SQA) architecture using a substrate-integrated rectangular cavity (SIRC) for compact size, wide-frequency re-designability, and high isolation responses. The proposed SQA is developed by engraving two U-shaped slots (USSs) on the top conductor of the SIRC. The USSs are excited by employing four microstrip feedlines to achieve self-quadruplexing antenna characteristics. The...