Filters
total: 89
Search results for: PARAMETER OF NONLINEARITY
-
Straightened characteristics of McKendrick-von Foerster equation
PublicationWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
Buckling analyses of metal cylindrical silos containing bulk solids during filling
PublicationThe paper presents 3D results on stability of thin-walled cylindrical metal silos made of isotropic rolled and corrugated plates containing bulk solids. The behavior of bulk solids was described using a hypoplastic constitutive model. Nonlinear finite element (FE) analyses with both geometric and material nonlinearity were performed with a perfect and an imperfect silo shell wherein initial geometric imperfections were taken into...
-
Directed electromagnetic pulse dynamics: projecting operators method
PublicationIn this article, we consider a one-dimensional model of electromagnetic pulse propagation in isotropic media, takinginto account a nonlinearity of the third order. We introduce a method for Maxwell's equation transformation on thebasis of a complete set of projecting operators. The operators correspond to wave dispersion branches including thedirection of propagation. As the simplest result of applying the method, we derive a system...
-
A simplified behavioral MOSFET model based on parameters extraction for circuit simulations.
PublicationThe paper presents results on behavior modeling of general purpose Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) for simulation of power electronics systems requiring accuracy both in steady-state and in switching conditions. Methods of parameters extraction including nonlinearity of parasitic capacitances and steady-state characteristics are based on manufacturer data sheet and externally measurable characteristics....
-
Detection of inter-turn faults in transformer winding using the capacitor discharge method
PublicationThe paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet...
-
Relations between magnetosonic perturbations as an indicator of a magnetosonic exciter and equilibrium parameters of a plasma
PublicationThe thermodynamic relations between perturbation of pressure and pertur- bation of mass density and between components of velocity which specify a magnetosonic wave are theoretically studied. A planar flow with the wave vec- tor forming a constant angle with the equilibrium magnetic field is investigated. The theory considers deviation from the adiabaticity of a flow due to some kind of heating–cooling function and thermal conduction...
-
Performance improvement of NN based RTLS by customization of NN structure - heuristic approach
PublicationThe purpose of this research is to improve performance of the Hybrid Scene Analysis – Neural Network indoor localization algorithm applied in Real-time Locating System, RTLS. A properly customized structure of Neural Network and training algorithms for specific operating environment will enhance the system’s performance in terms of localization accuracy and precision. Due to nonlinearity and model complexity, a heuristic analysis...
-
Numerical Determination of the Load-Bearing Capacity of a Perforated Thin-Walled Beam in a Structural System with a Steel Grating
PublicationThis article presents the results of numerical simulations of a structural system consisting of steel perforated thin-walled beams and a steel grating. The simulations were conducted using the finite element method. The analysis took into account physical and geometric nonlinearity as well as the contact between the steel grating and the beams. The main goal of the research was to develop load-bearing curves for the main beam in...
-
A Power-Efficient Digital Technique for Gain and Offset Correction in Slope ADCs
PublicationIn this brief, a power-efficient digital technique for gain and offset correction in slope analog-to-digital converters (ADCs) has been proposed. The technique is especially useful for imaging arrays with massively parallel image acquisition where simultaneous compensation of dark signal non-uniformity (DSNU) as well as photo-response non-uniformity (PRNU) is critical. The presented approach is based on stopping the ADC clock by...
-
An enhanced method in predicting tensile behaviour of corroded thick steel plate specimens by using random field approach
PublicationThe present work investigates the possibility of using random field techniques in modelling the mechanical behaviour of corroded thick steel plate specimens. The nonlinear Finite Element method, employing the explicit dynamic solver, is used to analyse the mechanical properties of typical specimens. A material model considering full nonlinearity is used to evaluate the stress-strain response. The influence of major governing parameters...
-
Study on deformed steel columns subjected to impact load due to soft-storey failure in buildings during earthquakes
PublicationThe so called soft-storey failure is one of the most typical types of damage induced in buildings as the result of earthquake excitation. It has been observed during ground motions that the failure of an upper soft storey of a structure results in large vertical impact load acting on the lower floors. If the resistance of the structural members of the lower storeys is not sufficient it may further lead to progressive collapse of...
-
Resonant and nonresonant excitation of waves in a planar magnetosonic flow
PublicationForced propagation of perturbations in a magnetosonic wave are considered. The driving force may be caused by stimulated Mandelstam–Brillouin scattering of optic waves or by intense magnetosonic exciter. Some heating-cooling function which takes into account radiative cooling and unspecified heating is taken into consideration, as well as nonlinearity of a medium. Both these factors make the excitation particular. The analytical...
-
Representation of magnetic hysteresis in a circuit model of a single-phase transformer
PublicationThe paper presents a mathematical model for the hysteresis phenomenon in a multi-winding single-phase core type transformer. The set of loop differential equations was developed for K-th winding transformer model where the flux linkages of each winding includes a flux common Φ to all windings as function of magneto motive force Θ of all windings. The first purpose of this paper is to determine a hysteresis nonlinearity involved...
-
STABILITY AND LOAD BEARING CAPACITY OF A BARS WITH BUILT UP CROSS SECTION AND ELASTIC SUPPORTS
PublicationThe present paper is devoted to the numerical analysis and experimental tests of compressed bars with built–up cross section which are commonly used as a top chord of the roof trusses. The significant impact on carrying capacity for that kind of elements in case of out-of-plane buckling is appropriate choice of battens which are used to provide interaction between separate members. Linear buckling analysis results and nonlinear static...
-
Low Current Transformer Utilizing Co-Based Amorphous Alloys
PublicationMetal oxide surge arresters have been widely used for protection of power system networks against overvoltages due to atmospheric discharges or malfunction of devices connected to the network. During its operation a surge arrester structure is degradated, what can be observed as an increase of a surge arrester leakage current. Paper presents an implementation of a new, high-permeability, Co64Fe4Ni1Si15B14 amorphous alloy as a current...
-
Low current transformer utilizing Co-based amorphous alloys
PublicationMetal oxide surge arresters have been widely used for protection of power system networks against overvoltages due to atmospheric discharges or malfunction of devices connected to the network. During its operation a surge arrester structure is degradated, what can be observed as an increase of a surge arrester leakage current. Paper presents an implementation of a new, high-permeability, Co64Fe4Ni1Si15B14 amorphous alloy as a current...
-
Fundamentals of Physics-Based Surrogate Modeling
PublicationChapter 1 was focused on data-driven (or approximation-based) modeling methods. The second major class of surrogates are physics-based models outlined in this chapter. Although they are not as popular, their importance is growing because of the challenges related to construction and handling of approximation surrogates for many real-world problems. The high cost of evaluating computational models, nonlinearity of system responses,...
-
A High-Efficient Measurement System With Optimization Feature for Prototype CMOS Image Sensors
PublicationIn this paper, a gray-scale CMOS image sensor (CIS) characterization system with an optimization feature has been proposed. By using a very fast and precise control of light intensity, based on the pulsewidth-modulation method, it is avoided to measure the illuminance every time. These features accelerate the multicriteria CIS optimization requiring many thousands of measurements. The system throughput is 2.5 Gb/s, which allows...
-
Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches
PublicationThis paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite...
-
Unusual divergence of magnetoacoustic beams
PublicationTwo-dimensional magnetosonic beams directed along a line forming a constant angle h with the equilibrium straight magnetic field are considered. Perturbations in a plasma are described by the system of ideal magnetohydrodynamic equations. The dynamics of perturbations in a beam are different in the cases of fast and slow modes, and it is determined by h and equilibrium parameters of a plasma. In particular, a beam divergence may...
-
An Improved Method of Minimizing Tool Vibration during Boring Holes in Large-Size Structures
PublicationThe paper presents a thoroughly modified method of solving the problem of vibration suppression when boring large-diameter holes in large-size workpieces. A new approach of adjusting the rotational speed of a boring tool is proposed which concerns the selection of the spindle speed in accordance with the results of the simulation of the cutting process. This streamlined method focuses on phenomenological aspects and involves the...
-
Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis
PublicationOur analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli ferromagnetic nanobeam accounting for a size-dependent model through assuming surface effects. In the framework of the flexomagnetic phenomenon, the large deflections are investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress coupled to the gradient of strain generates a scale-dependent Hookean stress-strain...
-
Edgewise Compressive Behavior of Composite Structural Insulated Panels with Magnesium Oxide Board Facings
PublicationEdgewise compression response of a composite structural insulated panel (CSIP) with magnesium oxide board facings was investigated. The discussed CSIP is a novel multifunctional sandwich panel introduced to the housing industry as a part of the wall, floor, and roof assemblies. The study aims to propose a computational tool for reliable prediction of failure modes of CSIPs subjected to concentric and eccentric axial loads. An advanced...
-
Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review
PublicationThe optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization...
-
Hybrid‐mode single‐slope ADC with improved linearity and reduced conversion time for CMOS image sensors
PublicationIn the paper, a single‐slope analog‐to‐digital converter (ADC) for integrated CMOS image sensor applications with an improved technique of conversion has been proposed. The proposed hybrid‐mode ADC automatically uses one of the following conversion techniques: time based (i.e. PWM) or voltage based (i.e. single‐slope). During the ADC operation, the clock frequency and reference voltage are modified in order to reduce the conversion...
-
Experimental and numerical investigations of ultimate strength of degradated structures
PublicationThe presented work investigates the corrosion influence on the structural behaviour of structural elements. Nine welded large-scale stiffened plates, and 30 standard small specimens have been subjected to the accelerated marine immersed conditions. After corrosion testing, the specimens have been accurately measured in terms of surface characteristics. The coupon specimens were furtherly subjected to tensile loading to develop...
-
Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures
PublicationThis work concerns the numerical modeling of the deformation process and mechanical properties of structures obtained by the additive method laser power bed fusion (LPBF). The investigation uses diamond structures of Ti–6Al–4V titanium implantation alloy with various relative densities. To model the process of tensile deformation of the materials, geometric models were used, mapping the realistic shape of the examined structures....
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublicationHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Systems, Environments, and Soliton Rate Equations: Toward Realistic Modeling
PublicationIn order to solve a system of nonlinear rate equations one can try to use some soliton methods. The procedure involves three steps: (1) find a ‘Lax representation’ where all the kinetic variables are combined into a single matrix ρ, all the kinetic constants are encoded in a matrix H; (2) find a Darboux–Bäcklund dressing transformation for the Lax representation iρ˙=[H,f(ρ)], where f models a time-dependent environment; (3) find...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublicationThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Quasi-one-dimensional exchange interactions and short-range magnetic correlations in CuTeO4
PublicationCuTeO4 has been proposed as a crystallographically distinct, yet electronic structure analog, of the superconducting cuprates. Here, we present a detailed characterization of the physical properties of CuTeO4 to address this proposal. Fitting of magnetic susceptibility data indicates unexpected quasi-one-dimensional, antiferromagnetic correlations at high temperature, with a nearest-neighbor Heisenberg exchange of 1=164(5) K....
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement
PublicationA variety of surrogate modelling techniques has been utilized in high-frequency design over the last two decades. Yet, the curse of dimensionality still poses a serious challenge in setting up re-liable design-ready surrogates of modern microwave components. The difficulty of the model-ing task is only aggravated by nonlinearity of circuit responses. Consequently, constructing a practically usable surrogate model, valid across...