Search results for: DYSARTHRIA DETECTION, SPEECH RECOGNITION, SPEECH SYNTHESIS, INTERPRETABLE DEEP LEARNING MODELS
-
Speech recognition system for hearing impaired people.
PublicationPraca przedstawia wyniki badań z zakresu rozpoznawania mowy. Tworzony system wykorzystujący dane wizualne i akustyczne będzie ułatwiał trening poprawnego mówienia dla osób po operacji transplantacji ślimaka i innych osób wykazujących poważne uszkodzenia słuchu. Active Shape models zostały wykorzystane do wyznaczania parametrów wizualnych na podstawie analizy kształtu i ruchu ust w nagraniach wideo. Parametry akustyczne bazują na...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Audiovisual speech recognition for training hearing impaired patients
PublicationPraca przedstawia system rozpoznawania izolowanych głosek mowy wykorzystujący dane wizualne i akustyczne. Modele Active Shape Models zostały wykorzystane do wyznaczania parametrów wizualnych na podstawie analizy kształtu i ruchu ust w nagraniach wideo. Parametry akustyczne bazują na współczynnikach melcepstralnych. Sieć neuronowa została użyta do rozpoznawania wymawianych głosek na podstawie wektora cech zawierającego oba typy...
-
Automatic Image and Speech Recognition Based on Neural Network
Publication -
LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques
PublicationDeception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques....
-
Influence of modulation detection threshold on speech intelligibility
Publication -
Transient detection algorithms for speech coding applications
Publication -
Deep learning-based waste detection in natural and urban environments
PublicationWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Comprehensive Evaluation of Statistical Speech Waveform Synthesis
Publication -
Transfer learning in imagined speech EEG-based BCIs
PublicationThe Brain–Computer Interfaces (BCI) based on electroencephalograms (EEG) are systems which aim is to provide a communication channel to any person with a computer, initially it was proposed to aid people with disabilities, but actually wider applications have been proposed. These devices allow to send messages or to control devices using the brain signals. There are different neuro-paradigms which evoke brain signals of interest...
-
Auditory-model based robust feature selection for speech recognition
Publication -
Computer-based detection of depression and dementia in spontaneous speech
Publication -
Detection of dialogue in movie soundtrack for speech intelligibility enhancement
PublicationA method for detecting dialogue in 5.1 movie soundtrack based on interchannel spectral disparity is presented. The front channel signals (left, right, center) are analyzed in the frequency domain. The selected partials in the center channel signal, which yield high disparity with left and right channels, are detected as dialogue. Subsequently, the dialogue frequency components are boosted to achieve increased dialogue intelligibility....
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublicationHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Automated Text Annotation Using Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publication -
Automated Text Annotation Using a Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publication -
Combining visual and acoustic modalities to ease speech recognition by hearing impaired people
PublicationArtykuł prezentuje system, którego celem działania jest ułatwienie procesu treningu poprawnej wymowy dla osób z poważnymi wadami słuchu. W analizie mowy wykorzystane zostały parametry akutyczne i wizualne. Do wyznaczenia parametrów wizualnych na podstawie kształtu i ruchu ust zostały wykorzystane modele Active Shape Models. Parametry akustyczne bazują na współczynnikach melcepstralnych. Do klasyfikacji wypowiadanych głosek została...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Automated speech-based screening of depression using deep convolutional neural networks
Publication -
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
AGAR a Microbial Colony Dataset for Deep Learning Detection
Publication -
Bożena Kostek prof. dr hab. inż.
People -
Deep learning-based waste detection in natural and urban environments
Publication -
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublicationHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Publication -
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublicationObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...
-
Andrzej Czyżewski prof. dr hab. inż.
PeopleProf. zw. dr hab. inż. Andrzej Czyżewski jest absolwentem Wydziału Elektroniki PG (studia magisterskie ukończył w 1982 r.). Pracę doktorską na temat związany z dźwiękiem cyfrowym obronił z wyróżnieniem na Wydziale Elektroniki PG w roku 1987. W 1992 r. przedstawił rozprawę habilitacyjną pt.: „Cyfrowe operacje na sygnałach fonicznych”. Jego kolokwium habilitacyjne zostało przyjęte jednomyślnie w czerwcu 1992 r. w Akademii Górniczo-Hutniczej...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublicationThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
Semi-supervised Text Annotation for Hate Speech Detection using K-Nearest Neighbors and Term Frequency-Inverse Document Frequency
Publication -
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublicationShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
Real-time mask-wearing detection in video streams using deep convolutional neural networks for face recognition
Publication -
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublicationWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Modeling of medium flow processes in transportation pipelines - the synthesis of their state-space models and the analysis of the mathematical properties of the models for leak detection purposes
PublicationThe dissertation concerns the issue of modeling the pipeline flow process under incompressible and isothermal conditions, with a target application to the leak detection and isolation systems. First, an introduction to the model-based process diagnostics is provided, where its basic terminology, tools, and methods are described. In the following chapter, a review of the state of the art in the field of leak detection and isolation...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublicationIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Analysis-by-synthesis paradigm evolved into a new concept
PublicationThis work aims at showing how the well-known analysis-by-synthesis paradigm has recently been evolved into a new concept. However, in contrast to the original idea stating that the created sound should not fail to pass the foolproof synthesis test, the recent development is a consequence of the need to create new data. Deep learning models are greedy algorithms requiring a vast amount of data that, in addition, should be correctly...
-
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publication -
IEEE Automatic Speech Recognition and Understanding Workshop
Conferences -
Jan Daciuk dr hab. inż.
PeopleJan Daciuk received his M.Sc. from the Faculty of Electronics of Gdansk University of Technology in 1986, and his Ph.D. from the Faculty of Electronics, Telecommunications and Informatics of Gdańsk University of Technology in 1999. He has been working at the Faculty from 1988. His research interests include finite state methods in natural language processing and computational linguistics including speech processing. Dr. Daciuk...
-
ISCA Tutorial and Research Workshop Automatic Speech Recognition
Conferences -
Biometria i przetwarzanie mowy 2023
e-Learning Courses{mlang pl} Celem kursu jest zapoznanie studentów z: metodami ustalania i potwierdzania tożsamości ludzi na podstawie mierzalnych cech organizmu cechami mowy ludzkiej, w szczególności polskiej metodami rozpoznawania mowy metodami syntezy mowy {mlang} {mlang en} The aim of the course is to familiarize the students with: methods of identification and verification of identity of people based on measurable features of their...
-
Biometria i przetwarzanie mowy 2024
e-Learning Courses{mlang pl} Celem kursu jest zapoznanie studentów z: metodami ustalania i potwierdzania tożsamości ludzi na podstawie mierzalnych cech organizmu cechami mowy ludzkiej, w szczególności polskiej metodami rozpoznawania mowy metodami syntezy mowy {mlang} {mlang en} The aim of the course is to familiarize the students with: methods of identification and verification of identity of people based on measurable features of their...
-
Material for Automatic Phonetic Transcription of Speech Recorded in Various Conditions
PublicationAutomatic speech recognition (ASR) is under constant development, especially in cases when speech is casually produced or it is acquired in various environment conditions, or in the presence of background noise. Phonetic transcription is an important step in the process of full speech recognition and is discussed in the presented work as the main focus in this process. ASR is widely implemented in mobile devices technology, but...
-
Mispronunciation Detection in Non-Native (L2) English with Uncertainty Modeling
PublicationA common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result...
-
Time-domain prosodic modifications for text-to-speech synthesizer
PublicationAn application of prosodic speech processing algorithms to Text-To-Speech synthesis is presented. Prosodic modifications that improve the naturalness of the synthesized signal are discussed. The applied method is based on the TD-PSOLA algorithm. The developed Text-To-Speech Synthesizer is used in applications employing multimodal computer interfaces.
-
Speech codec enhancements utilizing time compression and perceptual coding
PublicationA method for encoding wideband speech signal employing standardized narrowband speech codecs is presented as well as experimental results concerning detection of tonal spectral components. The speech signal sampled with a higher sampling rate than it is suitable for narrowband coding algorithm is compressed in order to decrease the amount of samples. Next, the time-compressed representation of a signal is encoded using a narrowband...
-
Enhanced voice user interface employing spatial filtration of signals from acoustic vector sensor
PublicationSpatial filtration of sound is introduced to enhance speech recognition accuracy in noisy conditions. An acoustic vector sensor (AVS) is employed. The signals from the AVS probe are processed in order to attenuate the surrounding noise. As a result the signal to noise ratio is increased. An experiment is featured in which speech signals are disturbed by babble noise. The signals before and after spatial filtration are processed...
-
KORPUS MOWY ANGIELSKIEJ DO CELÓW MULTIMODALNEGO AUTOMATYCZNEGO ROZPOZNAWANIA MOWY
PublicationW referacie zaprezentowano audiowizualny korpus mowy zawierający 31 godzin nagrań mowy w języku angielskim. Korpus dedykowany jest do celów automatycznego audiowizualnego rozpoznawania mowy. Korpus zawiera nagrania wideo pochodzące z szybkoklatkowej kamery stereowizyjnej oraz dźwięk zarejestrowany przez matrycę mikrofonową i mikrofon komputera przenośnego. Dzięki uwzględnieniu nagrań zarejestrowanych w warunkach szumowych korpus...