Search results for: MAGNETRON SPUTTERING
-
Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications
PublicationIn this work we study the luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through thermal annealing of the gold thin film. Thermal dewetting of gold film results in spherical gold...
-
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
PublicationIn this work we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium...
-
Plasmon resonance in gold-silver nanoalloys
Open Research DataSurface plasmon resonance (SPR) can lead to improve or formation a new linear or nonlinear optical phenomena. Especially it can enhance a light emission from luminescence materials. The presence of metal nanostructures or nanoparticles is necessary to excitation of the SPR. It is well known that gold and silver nanostructures exhibit plasmon resonance...
-
Investigation of plasmon resonance in a silver nanoparticles
Open Research DataSilver nanostructures were prepared on borosilicate glass (Corning 1737F) substrates. Thin Ag films (1–9 nm thickness) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica) in pure Ar plasma (argon, Air Products 99.999%). The Ag target was of 99.99% purity, the rate of layer deposition was about 0.4 nm·s−1, and the incident...
-
Formation of gold anostructures detected by SEM microscope
Open Research DataGold nanostructures were prepared on silicon - Si(111) as a substrate. The substrates (1 × 1 cm2 of area) were cleaned with acetylacetone and then rinsed in ethanol. Thin Au films (with thicknesses in a range of 1.7–5.0 nm) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica) under pure Ar plasma conditions (Argon, Air...
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublicationThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...
-
Molybdenum sulfide modified with nickel or platinum nanoparticles as an effective catalyst for hydrogen evolution reaction
PublicationIn this study, we investigate the catalytic performance of molybdenum sulfide (MoS2) modified with either nickel (Ni) or platinum (Pt) nanoparticles as catalysts for the hydrogen evolution reaction (HER). The MoS2 was prepared on the TiO2 nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS2 surface. Structural and morphological characterization...
-
An NO2 sensor based on WO3 thin films for automotive applications in the microwave frequency range
PublicationA microwave system dedicated to the detection of nitrogen dioxide in the harsh environment of the Norway highways is proposed. An optimized transmission line type of sensor coated with a tungsten trioxide thin film that changes its electrical properties under NO2 gas exposure is developed. The sensors' response (S) is given in °/GHz and it is calculated based on wideband measurements. The advantage of wideband measurements in comparison...
-
The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes
PublicationFossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
Influence of Annealing Atmospheres on Photoelectrochemical Activity of TiO2 Nanotubes Modified with AuCu Nanoparticles
PublicationIn this article, we studied the annealing process of AuCu layers deposited on TiO2 nanotubes (NTs) conducted in various atmospheres such as air, vacuum, argon, and hydrogen in order to obtain materials active in both visible and UV–vis ranges. The material fabrication route covers the electrochemical anodization of a Ti plate, followed by thin AuCu film magnetron sputtering and further thermal treatment. Scanning electron microscopy...
-
Anodic titania nanotubes decorated with gold nanoparticles produced by laser-induced dewetting of thin metallic films
PublicationHerein, we combine titania layers with gold species in a laser-supported process and report a substantial change of properties of the resulting heterostructures depending on the major processing parameters. Electrodes were fabricated via an anodisation process complemented with calcination to ensure a crystalline phase, and followed by magnetron sputtering of metallic films. The obtained TiO2 nanotubes with deposited thin (5, 10...
-
Fabrication and Significant Photoelectrochemical Activity of Titania Nanotubes Modified with Thin Indium Tin Oxide Film
PublicationOrdered titanium dioxide nanotubes (TiO2NTs) modified with indium tin oxide (ITO) films were obtained via magnetron sputtering, in which ITO plate was used as a target, onto the as-anodized titania support followed by the calcination process. The morphology of fabricated material with deposited oxide was investigated using scanning electron microscopy. Raman and UV–Vis spectroscopies were utilized to characterize crystalline phase...
-
Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide
Publicationhe growing needs for fast and reliable sensing devices stimulate development of new technological solutions. In this work a new multi-domain sensing method is demonstrated where optical sensing device has been applied to enhance amount of data received during electrochemical analysis. Thin, optically transparent, high-refractive-index, and electrically conductive indium tin oxide (ITO) film was deposited using magnetron sputtering...
-
Study on Combined Optical and Electrochemical Analysis Using Indium-tin-oxide-coated Optical Fiber Sensor
PublicationThe growing needs for fast and reliable sensing devices stimulate development of new technological solutions. In this work a new multi-domain sensing method is demonstrated where optical sensing device has been applied to enhance amount of data received during electrochemical analysis. Thin, optically transparent, high-refractive-index, and electrically conductive indium tin oxide (ITO) film was deposited using magnetron sputtering...
-
Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor
PublicationAnalysis of liquids performed in multiple domain, e.g., optical and electrochemical (EC), has recently focus significant attention. Our previous works have shown that a simple device based on indium-tin-oxide (ITO) coated optical fiber core may be used for optical monitoring of EC processes. At satisfying optical properties and thickness of ITO a lossy-mode resonance (LMR) effect can be obtained and used for monitoring of optical...
-
Insightful studies of AuCu nanostructures deposited on Ti platform: Effect of rapid thermal annealing on photoelectrochemical activity supported by synchrotron radiation studies
PublicationIn this work, we present the influence of annealing atmospheres during rapid thermal annealing (40◦C/s) on nanostructured Ti platforms modified by 10 nm layer of AuCu alloy obtained via magnetron sputtering. The AuCu/Ti platform annealed under hydrogen atmosphere exhibits the best photoelectrochemical activity under visible light, i.e. 27 times higher photocurrent than for pure Ti dimpled platform, and the lowest reflectance with minimum...
-
Light-improved glucose sensing on ordered Au-Ti heterostructure
PublicationNon-enzymatic electrochemical platforms sensitive towards glucose presence have attracted a worldwide attention during last decades. We report on influence of solar light onto response of gold-titanium heterostructures prepared via controllable approach. The material based on Au nanoparticles orderly distributed over the structured titanium foil was obtained by electrochemical anodization followed by chemical etching, magnetron...
-
A Flexible Nafion Coated Enzyme‐free Glucose Sensor Based on Au‐dimpled Ti Structures
PublicationThe detection of glucose at low concentrations using electrochemical sensors is of great importance due to the possibility of using different human body fluids than blood, such as e.g. urine, saliva, sweat or tears. The interest behind those biofluids is related to their utility in non-invasive sugar determination. In this work, we present flexible, fully biocompatible electrode material based on Au nanoparticles immobilized onto...
-
Nanostructuring of thin Au films deposited on ordered Ti templates for applications in SERS
PublicationIn this work the results on thermal nanostructuring of the Au films on Ti templates as well as morphology and optical properties of the obtained structures are reported. The bimetal nanostructures are fabricated in a multi-step process. First, the titania nanotubes are produced on the surface of Ti foil by anodization in an ethylene glycol-water solution containing fluoride ions. This is followed by chemical etching in oxalic acid...
-
Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe
PublicationIn this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be...
-
Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate
PublicationIn a significant amount of cases, the highly ordered TiO2nanotube arrays grow through anodic oxidationof a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practicalapplications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2formed directly onthe transparent, conductive substrate is very much desired. This work shows that high-quality Ti coatingcould be formed at room...
-
Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2–Au composite
PublicationAll over the world the number of people suffering from diabetes and related complications is drastically growing. Therefore, the need for accurate, reliable and stable sensor for monitoring of glucose in human body fluids is becoming highly desirable. In this work we show that material composed of gold layers deposited onto TiO2 nanotubes (NTs) formed onto the flexible Ti foil exhibits great response toward glucose oxidation and...
-
Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems
PublicationThis work is devoted to the identification properties of indium tin oxide (ITO) thin films responsible for their possible application in combined optical and electrochemical label-free sensing systems offering enhanced functionalities. Since any post-processing would make it difficult to identify direct relation between deposition parameters and properties of the ITO films, especially when deposition on temperature-sensitive substrates...
-
Enhanced photocatalytic activity of accordion-like layered Ti3C2 (MXene) coupled with Fe-modified decahedral anatase particles exposing {1 0 1} and {0 0 1} facets
PublicationNew composites consisting of decahedral anatase particles exposing {001} and {101} facets coupled with accordion-like layered Ti3C2 with boosted photocatalytic activity towards phenol and carbamazepine degradation were investigated. The photocatalysts were characterized with X-ray diffraction (XRD), diffuse reflectance spectroscopy (DR/UV–Vis), Brunauer-Emmett-Teller (BET) specific surface area, Raman spectroscopy, scanning electron...
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublicationHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...
-
Advancements in Diamond-Like Carbon Coatings
PublicationAn essential resource for engineers and scientists in the coatings field, providing an in-depth examination of current and advanced technologies for industrially oriented nanoceramic and nanocomposite coatings