Search results for: PLASMA DEPOSITION
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
Fabrication of high-density nitrogen-vacancy (NV) center-enriched diamond particles through methyl trityl amine (C20H19N) seeding
PublicationDiamond particles (DPs) show promise for advanced applications in bioimaging and quantum sensing due to the presence of defect centers. This work reports a unique growth process for diamond particles composed of nitrogen-vacancy centers (NV-DPs) using a methyl trityl amine (C20H19N) diamondoid seed, which acts as a nitrogen source for NV creation. Growth was performed via microwave plasma-assisted chemical vapor deposition in a...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Investigation of plasmon resonance in a silver nanoparticles
Open Research DataSilver nanostructures were prepared on borosilicate glass (Corning 1737F) substrates. Thin Ag films (1–9 nm thickness) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica) in pure Ar plasma (argon, Air Products 99.999%). The Ag target was of 99.99% purity, the rate of layer deposition was about 0.4 nm·s−1, and the incident...
-
SEM images of tge gold nanostructures on silicon
Open Research DataAu nanostructures were prepared on Si(111) as a substrate. The substrates (1 × 1 cm2 of area) were cleaned with acetylacetone and then rinsed in ethanol. Thin Au films (with thicknesses in a range of 1.7–5.0 nm) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica) under pure Ar plasma conditions (Argon, Air Products 99.999%)....
-
Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source
PublicationElectron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a...
-
Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure
PublicationOptical, photo-electrochemical, crystallographic and morphological properties of TiO2 thin films prepared by high power impulse magnetron sputtering at low substrate temperatures (<65 ◦C) without post-deposition thermal annealing are studied. The film composition-anatase, rutile or amorphous TiO2-is adjusted by the pressure (p ∼ 0.75-15 Pa) in the deposition chamber. The different crystallographic phases were determined with grazing...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Distance measurement by the low coherent interferometer
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1560 nm, an optical spectrum analyzer and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Formation of gold anostructures detected by SEM microscope
Open Research DataGold nanostructures were prepared on silicon - Si(111) as a substrate. The substrates (1 × 1 cm2 of area) were cleaned with acetylacetone and then rinsed in ethanol. Thin Au films (with thicknesses in a range of 1.7–5.0 nm) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica) under pure Ar plasma conditions (Argon, Air...
-
Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices
PublicationIn the present paper, we report the phenomena of the formation of the novel composite nanostructures based on TiO2 nanotubes (NTs) over-grown by thin boron-doped diamond (BDD) film produced in Microwave Plasma Enhanced Chemical Vapor Deposition (PE MWCVD). The TiO2 nanotube array overgrown by boron-doped diamond immersed in 0.1 M NaNO3 can deliver high specific capacitance of 7.46 mF cm−2. The composite electrodes were characterized...
-
Automated measurement method for assessing thermal-dependent electronic characteristics of thin boron-doped diamond-graphene nanowall structures
PublicationThis paper investigates the electrical properties of boron-doped diamond-graphene (B:DG) nanostructures, focusing on their semiconductor characteristics. These nanostructures are synthesized on fused silica glass and Si wafer substrates to compare their behaviour on different surfaces. A specialized measurement system, incorporating Python-automated code, was developed for an in-depth analysis of electronic properties under various...
-
Distance measurement by the low coherent interferometer with NND layer (the source wavelegth 1310 nm)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer
PublicationIn this work, the Mach-Zehnder interferometer was designed to monitor the electrochemical processes conducted at boron-doped diamond electrode surface. The diamond electrodes were synthesized via Microwave Plasma-Assisted Chemical Vapor Deposition on optical grade quartz glass. The achieved transmittance in working are of diamond electrodes reached 55 %. A cage system-based Mach-Zehnder interferometer was used which allowed the...
-
Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates
PublicationFabrication process of optically transparent boron nanocrystalline diamond (BNCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 ºC. A homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and film thickness depending from substrate...
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Balanand Santhosh Ph.D.
PeopleDr. Balanand Santhosh, obtained his Ph.D. (cum laude) in Materials, Mechatronics and Systems engineering from the Department of Industrial Engineering, University of Trento, Italy. He is currently working as Research Assistant Professor at Gdansk Univerity of Technology, Poland. Formerly he was working as a post-doctoral researcher at University of Trento, Italy. His research expertise is mainly in the area of ceramic processing...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
Raman data of deuterium and hydrogen grown boron-doped diamond
Open Research DataRaman spectra were recorded at room temperature using a micro-Raman spectrometer (Invia, Renishaw) equipped with an edge filter with different excitation wavelengths and lasers: UV λ = 325 nm (HeCd), blue λ = 488 nm (Ar+), green λ = 514 nm (Ar+), and IR λ = 785 nm (IR diode) and 50× microscope objective. To avoid sample heating, the radiation power...
-
Optoelectronic system for monitoring of thin diamond layers growth
PublicationDevelopment of the optoelectronic system for monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during mu PA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The multi-point Optical Emission Spectroscopy (OES) and Raman spectroscopy were employed as non-invasive optoelectronic tools. Dissociation of H-2 molecules, excitation and ionization of hydrogen...
-
Incorporation of nitrogen in diamond films – A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), confocal...
-
The electrical, morphological and optical properties of heavily boron-doped diamond sheets as a function of methane concentration in the gas phase
PublicationBoron-doped diamonds (BDD) are known for their excellent properties such as high thermal conductivity, high mobility, low absorption in visible light, and biocompatibility. In this work, we investigated the electrical, morphological and optical properties of heavily boron-doped diamond thin sheets as a function of methane concentration in the gas phase. Free-standing diamond sheets were fabricated using a microwave plasma-assisted...
-
Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes
PublicationIn the following work we describe preparation and the electrochemical performance of thin and free-standing heavy boron-doped diamond (BDD) nanosheets. The investigated foils were deposited on Ta substrate using microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Foils of two B-dopant densities were investigated, obtained on the base of 10 k and 20 k ppm [B]/[C] ratio in the gas admixture. The obtained foils...
-
Incorporation of nitrogen in diamond films - A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy...
-
Electrical characterization of diamond/boron doped diamond nanostructures for use in harsh environment applications
PublicationThe polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly...
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublicationIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Low-strain sensor based on the flexible boron-doped diamond-polymer structures
PublicationA free-standing high boron-doped diamond nanosheet (BDDNS) has been fabricated for the development of a flexible BDDNS strain senor. High boron-doped diamond was initially grown on a tantalum substrate in a microwave plasma-assisted chemical vapor deposition method, and was then transferred to a Kapton polymer substrate to fabricate the flexible BDDNS/Kapton device. Before performing the transfer process, the thin BDDNS’s morphology...
-
XPS data of deuterium and hydrogen grown boron-doped diamond
Open Research DataThe high-resolution C1s X-ray absorption spectra of BDD@H and BDD@D samples were measured using the facilities of the HE-SGM beamline (HE-SGM) at the BESSY II synchrotron radiation source of Helmholtz–Zentrum Berlin (HZB).[90] The measurements were carried out under ultra-high vacuum conditions: P ≈ 2×10−9 Torr at T = 300 K. The NEXAFS spectra were...
-
Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications
PublicationCleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer’s surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publication.A boron-doped diamond (BDD) sensor is proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Boron-doped diamond thin films, acting as active sensors, were deposited on both silicon wafer and glassy carbon (GC) substrates by microwave plasma assisted chemical vapour deposition. SEM micrographs showed that BDD–Si displays triangle-faceted crystallites ca. 0.5–3 μm in size, while BDD–GC...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry
PublicationPolycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond forma-tion and doping is totally diversified by using high kinetic energies of deu-terium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric...
-
Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants
PublicationDispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry...
-
Diamond-based protective layer for optical biosensors
PublicationOptical biosensors have become a powerful alternative to the conventional ways of measurement owing to their great properties, such as high sensitivity, high dynamic range, cost effectiveness and small size. Choice of an optical biosensor's materials is an important factor and impacts the quality of the obtained spectra. Examined biological objects are placed on a cover layer which may react with samples in a chemical, biological...
-
Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film
PublicationThe fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing
PublicationFabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrode on fused silica single mode optical fiber has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with the mean grain size in the range of 100-250...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublicationThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
A Multi Rig Screening Test for Thin Ceramic Coatings in Bio - Tribological Applications
PublicationA method is presented for the comparative testing of wear resistance of ceramic coatings made from materials potentially feasible in tribo - medical applications, mainly orthopaedic implants made from ceramics coated metals for low cost, long life and low wear particle emission into the body. The method was devised as the main tool for use in research and is comprised of flat on flat and ball on flat surface (sliding) tests. Seven...
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublicationFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Elemental composition, environment of deposition of the Lower Carboniferous Emma Fiord Formation oil shale in Arctic Canada
PublicationThe sedimentary succession of 51-m consisting of a thin coal seam (1 m) and oil shale with a marlstone and carbonate-mudstone matrix of the Lower Carboniferous (Viséan) Emma Fiord Formation located on the Grinnell Peninsula, Devon Island, Arctic Canada was examined. The techniques used include reflected light microscopy, and instrumental neutron activation analysis (INAA) for elemental concentration, and inductively coupled plasma...
-
Towards high quality ITO coatings: the impact of nitrogen admixture in HiPIMS discharges
PublicationThe paper reports controlled deposition of optically transparent and electrically conductive ITO films prepared by a combination of rf (13.56 MHz) and High Power Impulse Magnetron Sputtering (HiPIMS) systems without any post deposition thermal treatment/annealing. It is shown that (i) reactive admixture of N2 gas to the process and (ii) pressure in the deposition chamber enable to optimize optical properties of ITO films. Furthermore,...