Filters
total: 222
Search results for: fracture monitoring
-
Dynamics of cutting power during sawing with circular saw blades as an effect of wood properties changes in the cross section
PublicationIn the paper the effect of the method calculation upon the cutting power is presented. In computations were used models in which fracture toughness was incorporated. The comparison concerned models as follows: FM-CM – classic model in which the sum of all uncut chip thicknesses of the simultaneously teeth engaged represented the mean uncut chip thickness, FM-FDM – full dynamical model in which besides variable uncut chip thickness...
-
Correlation between Fractal Dimension and Areal Surface Parameters for Fracture Analysis after Bending-Torsion Fatigue
PublicationThis paper investigates the fracture surface topography of two steel and aluminum alloys subject to bending-torsion fatigue loadings, as well as their susceptibility to fatigue performance and failure mechanisms. Using fracture surface topography data analysis, elements with different geometries were elaborated. A correlation between the fractal dimension, other selected parameters of surface topography such as areal Sx, and...
-
Effect of adhesive compliance in the assessment of soft adhesives with the wedge test
PublicationWedge tests are usually analysed assuming that the free, unbonded members may be treated as encastré cantilever beams. However, if the adhesive layer is sufficiently flexible (e.g., due to low elastic modulus), then significant strain in the bonded region may occur and lead to modification of the behaviour outside this region. Using in conjunction a sensitive strain gauge method on asymmetric wedge tests and a mathematical analysis...
-
Fracture in composite/aluminium joints of variable adhesive properties
PublicationA strain gauge technique recently developed with the wedge test, for estimating crack length and, thus, the fracture energy of structural adhesive bonding, has been employed on a system in which one adherend had two types of surface treatment. Simple polishing and polishing with subsequent sandblasting were the treatments used, with a distinct straight line, perpendicular to the sample edges, separating the two. Despite the clear-cut...
-
Antagonist adhesion effects due to variable substrate surface
PublicationThe effects of variability of intrinsic adhesion within a joint have been studied using a single cantilever beam (SCB) test. Fracture energy was found not to be a simple function of relative areas of 2 surface pre-treatments: a 'weak' zone decreased strength more than expected from simple, additive considerations. By severing the adhesive along the strong-weak transition, fracture energy increased.The prior antagonist effect appears...
-
Distinctive properties of Scots pine (Pinus sylvestris L.) originating from the Carpathian and Great Poland-Pomeranian of Nature and Forest Land
PublicationIn this paper values of properties of Scots pine, the fracture toughness and of shear yield stress in the shear zone are presented. Samples of Scotch pine (Pinus sylvestris L.) wood of two provenances from Poland were tested. These properties were determined from the values of cutting power obtained experimentally on the saw frame PRW-15M. The values of fracture toughness and shear yield stress based on the Atkins model for cutting...
-
Fatigue fracture surface metrology of thin-walled tubular austenitic steel specimens after asynchronous loadings
PublicationThis paper aims to study the effect of asynchronous axial-torsional strain-controlled loading histories on fracture surface behavior of thin-walled tubular X5CrNi18-10 (304/304L) austenitic steel specimens. Tests under pure axial loading and pure torsional loading are also conducted to better segregate the effect of multiaxiality. The fractures surface topographies were examined through the profiles over the entire surface with...
-
Sawing Processes as a Way of Determining Fracture Toughness and Shear Yield Stresses of Wood
PublicationA new computational model, based on fracture mechanics, was used to determine cutting forces. Unlike traditional computing methods, which depend on many coefficients reflecting the machining of solid wood, the new model uses two main parameters: fracture toughness and shear yield stresses. The aim of this study was to apply this new method to determine these parameters for the tooth cutting edge principal positions and longitudinal...
-
A brief note on entire fracture surface topography parameters for 18Ni300 maraging steel produced by LB-PBF after LCF
PublicationThe concept of entire fracture surface investigation is helpful in explaining fatigue phenomena. In this paper, this method has been applied for 18Ni300 maraging steel using a 3D measurement system. Before post-mortem analysis, the specimens produced by laser beam powder bed fusion (LB-PBF) were tested under low-cycle fatigue (LCF) for eight strain amplitudes in the interval 0.3% to 1.0%. The attention was placed on the relationship...
-
The correlation of fractal dimension to fracture surface slope for fatigue crack initiation analysis under bending-torsion loading in high-strength steels
PublicationIn this study, the fractal dimension of fatigue fracture surfaces is investigated in order to find an alternative failure loading indicator. Some of many metrological factors are generalized by reducing the fracture surface structure to one factor and develop an entire fracture surface procedure by analyzing the impact of surface slope and calculation resolution. Three notched geometries are studied under cyclic bending-torsion:...
-
Meso‐scale analyses of size effect in brittle materials using DEM
PublicationThe paper describes numerical meso-scale results of a size effect on strength, brittleness and fracture in brittle materials like concrete. The discrete element method (DEM) was used to simulate the size effect during quasi-static splitting tension with the experimental-based meso-structure. The two-dimensional (2D) calculations were carried out on concrete cylindrical specimens with two diameters wherein two different failure...
-
Metal implants in ostheosynthesis - construction solutions, materials and applications
PublicationThe aim of the article is to present two case studies on intramedullary nails. The research included the evaluation of the type of fracture and the analysis of microstructure, chemical composition and hardness of the implant material.
-
Shear fracture of longitudinally reinforced concrete beams under bending using Digital Image Correlation and FE simulations with concrete micro-structure based on X-ray micro-computed tomography images
PublicationThe paper presents experimental and numerical investigations of the shear fracture in rectangular concrete beams longitudinally reinforced with steel or basalt bar under quasi-static three point bending. Shear fracture process zone formation and development on the surface of beams was investigated by Digital Image Correlation (DIC) whereas thorough analyses of 3D material micro-structure, air voids, width and curvature of shear...
-
Cyclic behavior of FeCoCrNiMn high entropy alloy coatings produced through cold spray
PublicationeCoCrNiMn high entropy alloy powders were employed to produce coatings on carbon steel through high pressure cold spray (at 1100 °C and 7 MPa in temperature and pressure respectively). X-ray diffraction of the sprayed material revealed a dense coating with the retention of the original crystallographic structure. Once splatted, particles revealed high flattening ratio with consequent excellent adhesion of the coating to the substrate....
-
Fractographical quantitative analysis of EN-AW 2024 aluminum alloy after creep pre-strain and LCF loading
PublicationThis paper explores the applicability of a new damage parameter combining both fracture surface topography and loading features to estimate the fatigue lifetime under creep pre-strain and low-cycle fatigue loading. Fractures of EN-AW 2024 aluminum alloy caused by mixed creep and low-cycle fatigue loading are experimentally characterized and quantified via surface topography analysis. The specimens were preliminary damaged in a...
-
Fracture simulations in concrete beam under bending using a mesoscopic model with cohesive elements
PublicationThe main aim of this paper was to investigate a complex fracture process in a concrete beam subjected to 3-point bending test by means of the 2D meso-scale FEM with 4-node cohesive elements embedded in the initial mesh of 3-node solid elements. The material heterogeneity was taken into account by considering 3 different phases (aggregate, cement matrix, ITZs) on the basis of randomly generated internal structure of concrete and...
-
Posttraumatic Orbital Emphysema: A Numerical Model
PublicationOrbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in...
-
Three-Dimensional Fractography for Conventional and Additive Manufactured Steels After Bending-Torsion Fatigue
PublicationIn this study, fracture surface topography parameters were measured to investigate the effects of multiaxial loading. In order to assess the metrological aspects of fracture for notched specimens made of high-strength steels processed by both conventional and additively manufacturing (AM) techniques, an optical surface profilometer was used. Three bending moment to torsion moment ratios (B/T) were studied, i.e. 2, 1 and 2/3. The...
-
Hydrogen assisted cracking of 2205 duplex stainless steel in synthetic sea water
PublicationThe cracking behavior of 2205 duplex stainless steels (DSSs) in synthetic sea water under cathodic polarization condition was investigated. (SSRT) method was employed in aim to evaluate the susceptibility to hydrogen assisted cracking. The results showed that the reduction in the uniform elongation (UEL) and the reduction of area (RA) varied with the applied cathodic current density. Significant reductions in ductility were found,...
-
Fracture mechanics model of cutting power versus widespread regression equations while wood sawing with circular saw blades
PublicationA comparison of the theoretical cutting power consumption results forecasted with the model (FM_CM model) which include work of separation (fracture toughness) in addition to plasticity and friction, and two widespread regression equations while wood sawing with circular saw blades has been described. in and cutting power consumption forecasted. In computations of the cutting power consumption during rip sawing of Scots pine wood...
-
Empirical verification in industrial conditions of fracture mechanics models of cutting power prediction
PublicationA comparison of experimental results obtained in the industrial conditions at a sawmill located in the Baltic Natural Forest Region (PL) and theoretical cutting power consumption forecasted with the models which include work of separation (fracture toughness) in addition to plasticity and friction has been described. In computations of cutting power consumption during rip sawing of Scots pine wood (Pinus sylvestris L.) values of...
-
AN INNOVATIVE APPROACH TO PREDICTION ENERGETIC EFFECTS OF WOOD CUTTING PROCESS WITH CIRCULAR-SAW BLADES
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. The aim of the paper is to present a new calculating model using the application of modern fracture mechanics and to compare cutting parameters of native beech, Bendywood...
-
Cutting model parameters from frame sawing of natural and impregnated Scots pine (Pinus sylvestris L.)
PublicationIn this paper, absolute and density normalized cutting model parameters of natural and impregnated Scots pine (Pinus sylvestris L.) are shown and a method for the calculation of their corresponding material properties in the principal material directions of wood is presented. The parameters were determined from measurements of cutting power on a sash gang saw, and are in detail the fracture toughness and the shear yield strength...
-
The impact of surface slope and calculation resolution on the fractal dimension for fractures of steels after bending-torsion fatigue
PublicationThe article presents the results of the fractal dimension measurements on the fatigue fracture surfaces of 10HNAP and S355J2 steels specimens after combined bending-torsion fatigue. For smooth and ring-notched specimens, three loading conditions were analyzed: (1) bending; (2) bending-torsion; and (3) torsion fatigue. Post-failure surface topography measurements were carried out on the entire fracture surfaces using an optical...
-
Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning
PublicationThe paper describes experimental investigation results of fracture in notched concrete beams under quasi-static three-point bending. To visualize 3D fracture in concrete under bending, an extended X-ray micro-computed tomography system was used, i.e. the tomography system SkyScan 1173 was connected to the loading machine ISTRON 5569. This combined system enabled to shot images of deforming concrete beams during a continuous deformation...
-
Micro-cracking pattern recognition of hybrid CNTs/GNPs cement pastes under three-point bending loading using acoustic emission technique
PublicationThe generation of microcracks has an important influence on the behaviour of concrete structures. In this study, the acoustic emission (AE) technique was used to investigate the fracture phenomena and micro-cracking behavior of hybrid carbon nanotubes (CNTs, the 1-D allotrope of carbon atoms) and graphene nanoplatelets (GNPs, 2D monolayer of sp2-hybridized carbon atoms), cement composites under three-point bending loading. In...
-
Plasticity of Bead-On-Plate Welds Made with the Use of Stored Flux-Cored Wires for Offshore Applications
PublicationExtreme atmospheric conditions in the marine and offshore industry are harmful to engineering materials, especially to welded joints, and may cause degradation of their properties. This article presents the results of research on the plasticity of bead-on-plate welds made using two types of seamless, copper plated flux-cored wires. Before welding, spools with wire were stored for 1 month in two distinct locations with different...
-
Effect of the Drying Method of Pine and Beech Wood on Fracture Toughness and Shear Yield Stress
PublicationThe modern wood converting processes consists of several stages and material drying belongs to the most influencing future performances of products. The procedure of drying wood is usually realized between subsequent sawing operations, affecting significantly cutting conditions and general properties of material. An alternative methodology for determination of mechanical properties (fracture toughness and shear yield stress) based...
-
Viscoplastic damage analysis of structures subjected to impact loading. Plate and shell structures. - Ł. Pyrzowski.
PublicationThe work presents the investigation in the response of plate-shell structures subjected to impact loading (gas mixture explosions). This phenomenon is studied in the context of its mechanical aspects, mainly the ductile fracture prediction. The work starts with the literature review and the description of theories, which are nowadays the most popular in the damage and failure modelling. After selecting the theoretical models and...
-
Accurate and continuous adhesive fracture energy determination using an instrumented wedge test
PublicationThe wedge test and the related double cantilever beam test are practical methods of assessing structural adhesive fracture energy. In the former, and to a lesser extent the latter, a recognised problem is the difficulty of following the length of the growing crack, required to calculate fracture energy with any accuracy. We present a novel method of measurement of crack length that has the advantages of being accurate and allowing...
-
The statistical impact of experimental result scatter of asphalt mixtures on their numerical modelling
PublicationThe paper presents selected test results of asphalt mixture conducted in low temperatures. The obtained parameters are highly diverse. It concerns ultimate breaking loads, stiffness parameters related to Young's modulus but also the fracture course. Statistical analysis upon the results makes it possible to relevantly estimate the material-defining parameter values. Such a random approach leads to the mean values of breaking and...
-
CUTTING POWER FORECASTING WHILE WOOD SAWING: FRACTURE MECHANICS APPROACH AND AXELSSON’S MODEL COMPARISON
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Another way is to forecast cutting power consumption on...
-
Biomechanics of Lumbar Spine Injury in Road Barrier Collision–Finite Element Study
PublicationLiterature and field data from CIREN database have shown that lumbar spine injuries occur during car crashes. There are multiple hypotheses regarding how they occur; however, there is no biomechanical explanation for these injuries during collisions with road safety barriers (RSBs). Therefore, the objective of this study was to investigate the mechanics of vertebral fractures during car collisions with concrete RSBs. The finite...
-
Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis
PublicationFirst metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors’ previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus...
-
The fracture behaviour of notched PMMA specimens under simple loading conditions – Tension and torsion experimental tests
PublicationThis paper presents the results of experimental testing of flat PMMA specimens during uniaxial loading conditions. Two separate tests were conducted: tensile and torsion. The specimens were weakened with V-type edge notches with different root radii: 0.5; 2 and 10 mm. The specimens were made in two thickness variants: 5 and 15 mm. Monotonic tensile and torsion tests were carried out while keeping the averaged strain rate constant,...
-
Strain sequence effect on fatigue life and fracture surface topography of 7075-T651 aluminium alloy
PublicationThe paper studies the effect of strain-loading sequence on fatigue lifetime and fracture surface topographies in 7075-T651 aluminum alloy specimens. Fatigue tests were performed in two ways: (i) constant-amplitude loading and (ii) two series of variable amplitude loading with non-zero mean strain values. The topography of the fatigue fractures was measured over their entire surfaces with the help of an optical confocal measurement...
-
Application of fracture mechanics for energetic effects predictions while wood sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Cutting forces may be employed to determine not only toughness...
-
Hydrogen degradation of pre-oxidized zirconium alloys
PublicationThe presence of the oxide layers on Zr alloys may retard or enhance the hydrogen entry and material degradation, depending on the layer features. This research has been aimed to determine the effects of pre-oxidation of the Zircaloy-2 alloy at a different temperature on hydrogen degradation. The specimens were oxidised in laboratory air at 350°C, 700°C, and 900°C. After, some samples were tensed at 10-5 strain rate and simultaneously...
-
Fracture susceptibility of high RAP content asphalt concrete in terms of aging
PublicationDue to the reduction of CO2 emissions during the production of asphalt mixtures and the decrease in the demand for mineral resources, the addition of reclaimed asphalt pavement (RAP) is becoming indispensable. The durability of asphalt pavements containing a high RAP content may be reduced due to a decrease in the cracking resistance of the material, especially under the influence of operational aging. The article presents the...
-
Fatigue Bending of V-Notched Cold-Sprayed FeCoCrNiMn Coatings
PublicationCold-spray coatings were produced by FeCoCrNiMn high-entropy alloy powders deposited on carbon steel substrate. The coatings were realized at intermediate temperature and high pressure (at 1100 °C and 7 MPa). The coating microstructure was characterized by scanning electron microscopy and X-ray diffraction, revealing a very dense deposition and high flattening ratio of the splatted particles. This had a large influence on the...
-
Application of Fracture Mechanics for Energetic Effects Predictions While Wood Sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (or power - more interesting from energetic point of view) could be considered from a point of view of modern fracture mechanics. Cutting...
-
Hydrogen Damage in Superaustenitic 904L Stainless Steels
Publicationresults on the influence of hydrogen on corrosion resistance and of hydrogen embrittlement of 904L superaustenitic stainless steel were investigated. The cracking behavior was studied by performing a slow strain rate test in synthetic seawater under varying cathodic polarization conditions. The results showed that the steel’s plasticity varied with the applied cathodic current density. Significant reductions in ductility were found,...
-
Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach
PublicationThe paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow...
-
Hydrogen induced degradation of structural steel exposed to the technical liquid hydrocarbons
PublicationSusceptibility of the differently heat treated 26H2MF steel to stress corrosion cracking has been evaluated in the constant strain rate tension tests done at the strain rate 10-6s-1 and in the constant load tests done at the 0,98 of fracture load. The boiler fuel and the aged mineral oil at 135C and 80C respectively, have been used as the aggressive environments.
-
The use of a two-phase Monte Carlo material model to reflect the dispersion of asphalt concrete fracture parameters
PublicationThe work covers comprehensive laboratory tests of semi-circular bending (SCB) of asphalt concrete samples. The results of two test series, including four and 32 SCB specimens, indicate a substantial scatter of force–deflection (F-d) histories. The numerical analysis is aimed to reflect the maximum breaking load and fracture energy of the samples, pointing out their random character. The original simulation-based fictitious Monte...
-
EXPERIMENTAL AND NUMERICAL INVESTIGATION ON SPECIMEN GEOMETRY EFFECT ON THE CTOD VALUE FOR VL-E36 SHIPBUILDING STEEL
PublicationThere are special cases in the marine industry, where additional material tests, such as the fracture toughness test, must be performed. Additional fracture toughness tests, such as CTOD (Crack Tip Opening Displacement), are typically performed on three-point bend specimens. The dimension that defines all the specimen dimensions is the thickness of the material to be tested. It is recommended by classification societies (e.g. DNVGL)...
-
Fracture Areas Quantitative Investigating of Bending-Torsion Fatigued Low-Alloy High-Strength Steel
PublicationIn this study, the impact of pseudo-random non-proportional bending-torsion fatigue loadings proportion on the fatigue life and the fracture surface topography was analyzed. Investigation was carried out for 24 specimens made of S355J2 steel with 11 different ratios of maximum stresses λ. For these cases, after the fatigue tests, the surface topography measurements were carried out using an optical profilometer, using the focus...
-
On the crack front curvature in bonded joints
PublicationStandard tests of adhesively bonded specimens are likely to produce heterogeneous stress distribution along the crack front and its vicinity. High separation rate mode I dominated fracture test is performed.Observation of post mortem fractured surfaces with an optical microscope reveals characteristic features of mixed mode I/III fracture near the sides of the specimen but not in the middle. At first, finite elements calculations...
-
Fracture Toughness and Shear Yield Strength Determination for Two Selected Species of Central European Provenance
PublicationWhen offcut of wood is formed by shearing, Atkins’s analyses of sawing processes can be applied. Using this modern approach, it is possible to determine the fracture toughness and shear yield strength of wood. This model is only applicable for the axial-perpendicular cutting direction because both of these parameters are suitable for the given direction of cutting edge movement and cannot be considered material constants. Alternatively,...
-
Impact Behaviour of Glass Fribre /Epoxy Composites with Nano-Enhanced Resin after Water Exposure
PublicationImpact behaviour of glass fibre /epoxy composites with nano- SiO2 modified resin was studied in terms of low velocity impact after water exposure. Nanocomposites with 1%, 2%, 3% 5% 7% nano-SiO2 (Nanopox- Evonic) were investigated. Peak impact load and impact damage area as a function of nanoparticle contents were compared for dry specimens and for samples exposed to water (0.7 %wt. 1.7% water absorbed) at 1J, 2J 3J impact energies....