Search results for: SUPER RESOLUTION, DEEP LEARNING, THERMAL IMAGERY, OBJECT DETECTION
-
Musical Instrument Identification Using Deep Learning Approach
PublicationThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
PublicationDue to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublicationControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublicationDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Ultrahigh-resolution detection techniques for biomedical applications of optical coherent tomography.
PublicationOptyczne metody pomiarowe odgrywają w ostatnich latach coraz większą rolę w badaniach i diagnostyce medycznej. Mają one szereg zalet, do których zaliczyć można odporność na promieniowanie elektromagnetyczne, bezinwazyjność, bezpieczeństwo pomiaru oraz wysoką rozdzielczość. Jedną z najważniejszych technik stosowanych w diagnostyce medycznej jest koherentna tomografia optyczna (OCT). Jest to wysokorozdzielcza metoda obrazowania wewnętrznych...
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publication -
Generation of microbial colonies dataset with deep learning style transfer
Publication -
Aleksandra Karpus dr inż.
PeopleAleksandra Karpus jest absolwentką Matematyki Stosowanej na Wydziale Fizyki Technicznej i Matematyki Stosowanej oraz Informatyki na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. W latach 2011-2014 pracowała z danymi w przemyśle, wykorzystując bazy danych Oracle. Od 2014 roku jest zawodowo związana z Politechniką Gdańską, obecnie jest zatrudniona na stanowisku adiunkta naukowo-dydaktycznego w Katedrze...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Object-oriented approach to oil spill detection using ENVISAT ASAR images
Publication -
Moving object detection and tracking for the purpose of multimodal surveillance system in urban areas
PublicationBackground subtraction method based on mixture of Gaussians was employed to detect all regions in a video frame denoting moving objects. Kalman filters were used for establishing relations between the regions and real moving objects in a scene and for tracking them continuously. The objects were represented by rectangles. The objects coupling with adequate regions including the relation of many-to-many was studied experimentally...
-
An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea
Publication -
High resolution XPS analysis of BDD electrode functionalization steps towards SARS-CoV-2 detection
Open Research DataThis dataset contains the results of the high-resolution XPS analyses of a set of boron-doped diamond (BDD) electrodes after consecutive functionalization steps toward anchoring of a receptor capable of SARS-CoV-2 virus detection. The analysis was carried out in the binding energy range of C1s, N1s, O1s, Ni2p3/2. The measurements were carried out on...
-
High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors
PublicationA common-path polarization interferometer using a Wollaston prism and an area detector for the measurement of retardation or optical path difference is presented. Employing a moderate-resolution 1280 by 1024 pixel monochrome camera, it offers a measurement range of approximately 780 radians at 830 nm and 1350 radians at 515 nm while maintaining a high measurement resolution. Retardation introduced by a zero-order waveplate or a...
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublicationThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublicationIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publication -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publication -
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublicationAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
The use of machine learning for face regions detection in thermograms
PublicationThe aim of this study is to analyse the methods of detecting characteristic points of the face in thermographic images. As part of the implementation an extensive analysis of scientific publications covering similar issues both for the analysis of images made in visible light and thermographic images was carried out. On the basis of this analysis, 3 models were selected and then they were implemented and tested on the basis of...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
<title>Ultrahigh-resolution detection techniques for biomedical applications of optical coherent tomography</title>
Publication -
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Improved estimation of dynamic modulus for hot mix asphalt using deep learning
Publication -
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
Publication -
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
The detection of Alternaria solani infection on tomatoes using ensemble learning
Publication -
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials
PublicationDeep eutectic solvents (DESs) have become a hot topic in many branches of science due to their remarkable properties. They have been studied in a wide variety of applications. In particular, choline chloride (ChCl)-based DESs are one of the most commonly used representatives of these fluids. Nevertheless, in order to apply DESs in some fields, it is essential to guarantee their stability, reusability, and biocompatibility. In this...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publication -
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publication -
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publication -
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublicationBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
The motion influence on respiration rate estimation from low-resolution thermal sequences during attention focusing tasks
PublicationGlobal aging has led to a growing expectancy for creating home-based platforms for indoor monitoring of elderly people. A motivation is to provide a non-intrusive technique, which does not require special activities of a patient but allows for remote monitoring of elderly people while assisting them with their daily activities. The goal of our study was to evaluate motion performed by a person focused on a specific task and check...
-
Experimental investigations and prediction of WEDMed surface of nitinol SMA using SinGAN and DenseNet deep learning model
Publication -
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublicationThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...