Search results for: CUMULATIVE STRAIN ENERGY DENSITY
-
On the use of the cumulative strain energy density for fatigue life assessment in advanced high-strength steels
PublicationIn this paper, the applicability of the cumulative strain energy density is explored as a fatigue indicator parameter for advanced high-strength steels subjected to strain-controlled conditions. Firstly, the cyclic stress-strain responses of nine steels, selected from three multiphase families, encompassing different elemental compositions and different heat treatment routes, were studied. Then, the predictive capabilities of the...
-
Multiaxial fatigue life assessment in notched components based on the effective strain energy density
Publication -
Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel
PublicationIn this study, the connection between total strain energy density and fracture surface topography is investigated in additively manufactured maraging steel exposed to low-cycle fatigue loading. The specimens were fabricated using laser beam powder bed fusion (LB-PBF) and examined under fully-reversed strain-controlled setup at strain amplitudes scale from 0.3% to 1.0%. The post-mortem fracture surfaces were explored using a non-contact...
-
High Energy Density Physics
Journals -
Determination of equivalent axle load factors with the use of strain energy of distortion
PublicationThe paper proposes a new method for calculation of equivalent axle load factors based on the analysis of strain energy of distortion induced in road pavements by traffic loads. The main advantage of the method is the more accurate calculation of the effects of multiple axles and super single versus dual tyres. The methodconsiders the location of critical points, at which strain energy of distortion reaches extreme values. When...
-
Consideration of Pseudo Strain Energy in Determination of Fatigue Life and Microdamage Healing of Asphalt Mastics
PublicationRest periods between cyclic loads can lead to recovery of damage and extension of fatigue life. This phenomenon is referred to as healing. Healing is clearly observed in bituminous materials, such as asphalt mastics, which belong to the components of asphalt mixtures. Due to the nature of road pavement traffic loading, which is characterized by series of intermittent pulses with rest periods, consideration of healing is necessary...
-
Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology
PublicationToday, torrefaction is important technique for extending the potential of biomass for improvement of energy density. The independent variables investigated for torrefaction study were temperature, retention time, acid concentration, and particle size. The experiment was designed by central composite design (CCD) method using design expert (version 11). The three dependent variables were higher heating value (HHV), energy enhancement...
-
A dual-control strategy based on electrode material and electrolyte optimization to construct an asymmetric supercapacitor with high energy density
PublicationMetal-organic frames (MOFs) are regarded as excellent candidates for supercapacitors that have attracted much attention because of their diversity, adjustability and porosity. However, both poor structural stability in aqueous alkaline electrolytes and the low electrical conductivity of MOF materials constrain their practical implementation in supercapacitors. In this study, bimetallic CoNi-MOF were synthesized to enhance the electrical...
-
Fatigue life prediction of notched components under size effect using strain energy reformulated critical distance theory
PublicationNotch and size effects show significant impact on the fatigue performance of engineering components, which deserves special attention. In this work, a strain energy reformulated critical distance theory was developed for fatigue life prediction of notched components under size effect. Experimental data of different notched specimens manufactured from GH4169, TC4, TC11 alloys and low carbon steel En3B were used for model validation...
-
Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor
Publication -
Local material symmetry group for first- and second-order strain gradient fluids
PublicationUsing an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients....
-
On Dynamic Extension of a Local Material Symmetry Group for Micropolar Media
PublicationFor micropolar media we present a new definition of the local material symmetry group considering invariant properties of the both kinetic energy and strain energy density under changes of a reference placement. Unlike simple (Cauchy) materials, micropolar media can be characterized through two kinematically independent fields, that are translation vector and orthogonal microrotation tensor. In other words, in micropolar continua...
-
On Surface Kinetic Constitutive Relations
PublicationIn the framework of the strain gradient surface elasticity we discuss a consistent form of surface kinetic energy. This kinetic constitutive equation completes the statement of initial–boundary value problems. The proposed surface kinetic energy density is the most general function consistent with the constitutive relations in bulk. As the surface strain energy depends on the surface deformation gradient and its gradient, the kinetic...
-
A Note on Reduced Strain Gradient Elasticity
PublicationWe discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components
PublicationThis paper aims to compare the predictive capabilities of different one-parameter damage laws and local stress-strain approaches to assess the fatigue lifetime in notched components subjected to proportional bending-torsion loading. The tested fatigue damage parameters are defined using well-known stress-based, strain-based, SWT-based and energy-based relationships. Multiaxial cyclic plasticity at the notch-controlled process zone...
-
On refined constitutive equations in the six-field theory of elastic shells
PublicationWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Ellipticity of gradient poroelasticity
PublicationWe discuss the ellipticity properties of an enhanced model of poroelastic continua called dilatational strain gradient elasticity. Within the theory there exists a deformation energy density given as a function of strains and gradient of dilatation. We show that the equilibrium equations are elliptic in the sense of Douglis–Nirenberg. These conditions are more general than the ordinary and strong ellipticity but keep almost all...
-
On the crack front curvature in bonded joints
PublicationStandard tests of adhesively bonded specimens are likely to produce heterogeneous stress distribution along the crack front and its vicinity. High separation rate mode I dominated fracture test is performed.Observation of post mortem fractured surfaces with an optical microscope reveals characteristic features of mixed mode I/III fracture near the sides of the specimen but not in the middle. At first, finite elements calculations...
-
ON DYNAMICS OF ELASTIC NETWORKS WITH RIGID JUNCTIONS WITHIN NONLINEAR MICRO-POLAR ELASTICITY
PublicationWithin the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider a three-dimensional elastic network made of three families of elastic fibers connected...
-
Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
Publicationwe address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
Energy Consumption Analysis Methods in Industry
PublicationThis paper overviews applied methods to evaluate energy consumption in Industry. The most important law regulations are presented, which decide on the necessity to conduct an effec - tive energetic economy. Basic assumptions are defined to calculate direct and cumulative energy consumption. The pros and cons of using each method are presented.
-
On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations
PublicationWithin the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel...
-
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublicationThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
Extended non-linear relations of elastic shells undergoing phase transitions
PublicationThe non-linear theory of elastic shells undergoing phase transitions was proposed by two first authors in J. Elast. 79, 67-86 (2004). In the present paper the theory is extended by taking into account also the elastic strain energy density of the curvilinear phase interface as well as the resultant forces and couples acting along the interface surface curve itself. All shell relations are found from the variational principle of...
-
The K x-ray line structures of the 3d-transition metals in warm dense plasma
Publication -
K X-ray line energies as diagnostics of warm dense plasma
Publication -
Modeling of the K and L x-ray line structures for molybdenum ions in warm dense Z-pinch plasma
Publication -
The K X-ray line structures for a warm dense copper plasma
Publication -
Images revealing the effect of local femtosecond laser ablation of conductive poly(lactic acid) 3D printed electrodes
Open Research DataThe dataset reveals the images of the femtosecond laser (FSL) ablation at the surface of commercially available carbon black-filled poly(lactic acid) 3D printed electrode. The process is used for the increase of the charge transfer of this electrode in electrochemical studies.
-
On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral Lipschitz domains
PublicationWe provide the proof of an existence and uniqueness theorem for weak solutions of the equilibrium problem in linear dilatational strain gradient elasticity for bodies occupying, in the reference configuration, Lipschitz domains with edges. The considered elastic model belongs to the class of so-called incomplete strain gradient continua whose potential energy density depends quadratically on linear strains and on the gradient of...
-
On weak solutions of boundary value problems within the surface elasticity of Nth order
PublicationA study of existence and uniqueness of weak solutions to boundary value problems describing an elastic body with weakly nonlocal surface elasticity is presented. The chosen model incorporates the surface strain energy as a quadratic function of the surface strain tensor and the surface deformation gradients up to Nth order. The virtual work principle, extended for higher‐order strain gradient media, serves as a basis for defining...
-
On Dynamic Boundary Conditions Within the Linear Steigmann-Ogden Model of Surface Elasticity and Strain Gradient Elasticity
PublicationWithin the strain gradient elasticity we discuss the dynamic boundary conditions taking into account surface stresses described by the Steigmann–Ogden model. The variational approach is applied with the use of the least action functional. The functional is represented as a sum of surface and volume integrals. The surface strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation of the strain gradient elasticity...
-
A city and a wind farm. Landscape perspective
PublicationThe aim of the paper is to present the problems of the location of the wind farms in close neighbourhood to the historical cities, and the ways to minimize the potential landscape threats. The production of clean energy is obligatory in EU. In spite of how positive to the environment the wind energy production is, it may cause negative effects. The results of landscape studies of two towns in Poland prove that the location of such...
-
On the peculiarities of anti-plane surface waves propagation for media with microstructured coating
PublicationWe discuss new type of surface waves which exist in elastic media with surface energy. Here we present the model of a coating made of polymeric brush. From the physical point of view the considered model of surface elasticity describes a highly anisotropic surface coating. Here the surface energy model could be treated as 2D reduced strain gradient continuum as surface strain energy depends on few second spatial derivatives of...
-
Effect of austempering temperature on microstructure and cyclic deformation behaviour of multiphase low-carbon steel
PublicationThis paper examined the cyclic deformation behaviour of multiphase low-carbon steel that was subjected to austempering heat treatments at four temperatures (190 °C, 230 °C, 275 °C, and 315 °C) below the martensite start temperature (Ms = 353 °C). The tests were conducted at room temperature, under fully reversed strain-controlled conditions, with strain amplitudes in the range 0.5–1.0%. The microstructure was observed by transmission...
-
GRAPHENE-BASED SUPERCAPACITORS APPLICATION FOR ENERGY STORAGE
PublicationRecent advances in graphene-based supercapacitor technology for energy storage application were summarized. The comparison of different types of electrode materials in such supercapacitors was performed. The supercapacitors with graphene-based electrodes exhibit outstanding performance: high charge-discharge rate, high power density, high energy density and long cycle-life, what makes them suitable for various applications, e.g....
-
On the use of uniaxial one-parameter damage laws for estimating fatigue life under multiaxial loading
PublicationThe goal of this paper is to evaluate the capabilities of different one-parameter fatigue laws to estimate crack initiation in notched components under multiaxial loading. Fatigue damage is accounted for through stress-based, strain-based, and energy-based approaches while the cyclic plasticity at the notch-controlled process zone is estimated using linear-elastic simulations. The results show that energy-based formulations established...
-
Deformation of an elastic second gradient spherical body under equatorial line density of dead forces
PublicationWe consider deformations of an elastic body having initially a spherical shape. Assumed deformation energy depends on the first and second gradient of displacements. We apply an equatorial line density of dead loads, that are forces per unit line length directed in radial direction and applied along the equator of the sphere. We restrict ourselves our analysis to the case of linearized second strain gradient isotropic elasticity...
-
Hydrogen Damage in Superaustenitic 904L Stainless Steels
Publicationresults on the influence of hydrogen on corrosion resistance and of hydrogen embrittlement of 904L superaustenitic stainless steel were investigated. The cracking behavior was studied by performing a slow strain rate test in synthetic seawater under varying cathodic polarization conditions. The results showed that the steel’s plasticity varied with the applied cathodic current density. Significant reductions in ductility were found,...
-
Accurate and continuous adhesive fracture energy determination using an instrumented wedge test
PublicationThe wedge test and the related double cantilever beam test are practical methods of assessing structural adhesive fracture energy. In the former, and to a lesser extent the latter, a recognised problem is the difficulty of following the length of the growing crack, required to calculate fracture energy with any accuracy. We present a novel method of measurement of crack length that has the advantages of being accurate and allowing...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublicationIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Comparative analysis of the flow control over a circular cylinder with detached flexible and rigid splitter plates
PublicationA comparative study is performed on a circular cylinder with both flexible and rigid splitter plates (SPs). This study has the novelty of using single and dual detached SPs located downstream of the cylinder. The dimensionless gap distance between the first splitter plate and the cylinder as well as the distance between the SPs are varied. The strain of flexible SPs can be used for energy harvesting from the flow. Therefore, a...
-
Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
PublicationAerogel-based polymer composite foams are promising for large strain piezoresistive sensors, but their aerogel skeleton is partially destroyed during the foaming process, limiting their sensitivity. Herein, the thermoplastic polyurethane was synthesized on the aerogel skeleton to obtain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite materials foamed with the aid of supercritical carbon...
-
Determinants of the surface quality, density and dimensional correctness in selective laser melting of the Ti-13Zr-13Nb alloy
PublicationSelective laser melting is widely used for custom-designed elements. Successful manufacturing depends on laser treatment parameters and material features. This research aimed to determine the effects of laser power, scan time and hatch distance on surface quality, relative density and dimensional precision for cuboids made of the Ti-13Zr-13Nb alloy. The influence of energy density, energy flux and pre-heating was seen to be decisive...
-
Experimental verification and comparison of mode shape-based damage detection methods
PublicationThis paper presents experimental verification and comparison of damage detection methods based on changes in mode shapes such as: mode shape curvature (MSC), modal assurance criterion (MAC), strain energy (SE), modified Laplacian operator (MLO), generalized fractal dimension (GFD) and Wavelet Transform (WT).
-
Kazimierz Darowicki prof. dr hab. inż.
PeopleStudia wyższe ukończyłem w czerwcu 1981 roku po zdaniu egzaminu dyplomowego i obronie pracy magisterskiej. Opiekunem pracy magisterskiej był dr hab. inż. Tadeusz Szauer. W roku 1991, 27 listopada uzyskałem stopień naukowy broniąc pracę doktorską zatytułowaną „Symulacyjna i korelacyjna analiza widm immitancyjnych inhibitowanej reakcji elektrodowej”. Promotorem pracy był prof. dr hab. inż. Józef Kubicki (Wydział Chemiczny...