Filters
total: 23
Search results for: FEN MEADOW EUTROPHIC FENS SUPERVISED CLASSIFICATION THERMAL DATA ALS LST
-
Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat
PublicationThe Biebrza River valley (NE Poland) is distinguished by largely intact, highly natural vegetation patterns and very good conservation status of wetland ecosystems. In 20132014, studies were conducted in the upper Biebrza River basin to develop a remote sensing method for alkaline fen classification a protected Natura 2000 habitat (code 7230) using remote sensing technologies. High resolution airborne true colour (RGB) and...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Impact of optimization of ALS point cloud on classification
PublicationAirborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM...
-
Flood Classification in a Natural Wetland for Early Spring Conditions Using Various Polarimetric SAR Methods
PublicationAbstract--- One of the major limitations of remote sensing flood detection is the presence of vegetation. Our study focuses on a flood classification using Radarsat-2 Quad-Pol data in a natural floodplain during leafless, dry vegetation (early spring) state. We conducted a supervised classification of a data set composed of nine polarimetric decompositions and Shannon entropy followed by the predictors' importance estimation to...
-
Optimized AVHRR land surface temperature downscaling method for local scale observations: case study for the coastal area of the Gulf of Gdańsk
PublicationSatellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth’s environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land...
-
A new method for real-time monitoring of volatiles in frying fumes using proton transfer reaction mass spectrometry with time-of-flight analyse
PublicationTo safeguard the consumers’ well-being, it is necessary to develop novel methods for determination of carcinogens in food, including volatiles generated during frying. The currently used procedures for analysis of volatile fraction of vegetable oils are not based on real-time measurements and thus do not enable the determination of carcinogenic compounds in frying fumes; instead, only the headspace or liquid fraction is sampled....
-
Using angular dependence of multibeam echo features in seabed classification
PublicationThe new approach to seabed classification based on processing multibeam sonar echoes is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry measurements or underwater object imaging, are also the promising tool in seafloor identification and classification, having several advantages over conventional single beam echosounders. The proposed seabed classification...
-
Automatic Clustering of EEG-Based Data Associated with Brain Activity
PublicationThe aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain....
-
Active Dynamic Thermography in Medical Diagnostics
PublicationThis is an overview of active thermal imaging methods in medical diagnostics using external thermal stimulation. In this chapter, several clinical cases diagnosed using the active dynamic thermography method, ADT, are presented. Features of this technology are discussed and main advantages underlined. Applications in skin burn diagnostics and quantitative evaluation leading to modern classification of burned patients for further...
-
Comparison of direct and inverse methods of satellite observations downscaling for the coastal zone area
PublicationThe Earth observation satellite imaging systems have known limitations, especially regarding their spatial and temporal resolution. Therefore, approaches which aim to combine data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution are of high interest. This allows for joint utilization of the advantages of both these types of sensors....
-
Seafloor characterisation using multibeam data: sonar image properties, seabed surface properties and echo properties
PublicationIn the paper, the approach to seafloor characterisation is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry and underwater object detection and imaging, are also the promising tool in seafloor characterization and classification, having several advantages over conventional single beam echosounders. The proposed approach relies on the combined, concurrent use...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublicationAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation
PublicationThis work is part of an effort for the development of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. This paper focuses on hazards resulted from the non-use of personal protective equipment (PPE), and examines a few supervised learning techniques to compose the proposed system for the purpose of recognition of three protective...
-
Deep learning-based waste detection in natural and urban environments
PublicationWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Monitoring Trends of Land Use and Land Cover Changes in Rajang River Basin
PublicationIn this study, the spatiotemporal changes in land use and land cover (LULC) were evaluated from 1992 to 2015 for the Rajang River Basin (RRB) located in the Sarawak State of Malaysia. The changes in water bodies cropped lands, and forests were assessed based on the available remotely sensed satellite data. Supervised classification with the Maximum-Likelihood-Algorithm technique was adopted for monitoring the LULC changes using...
-
Identification of category associations using a multilabel classifier
PublicationDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Fully Automated AI-powered Contactless Cough Detection based on Pixel Value Dynamics Occurring within Facial Regions
PublicationIncreased interest in non-contact evaluation of the health state has led to higher expectations for delivering automated and reliable solutions that can be conveniently used during daily activities. Although some solutions for cough detection exist, they suffer from a series of limitations. Some of them rely on gesture or body pose recognition, which might not be possible in cases of occlusions, closer camera distances or impediments...
-
Ocena stopnia degradacji termicznej olejów jadalnych z wykorzystaniem techniki ultraszybkiej chromatografii gazowej
PublicationPod wpływem podwyższonej temperatury oleje jadalne ulegają procesowi degradacji termicznej. W tym przypadku ilość lotnych związków organicznych, charakteryzujących się dużą polarnością, występujących w olejach jadalnych jest większa. Zmiany składu olejów jadalnych mogą stanowić zagrożenie dla zdrowia człowieka. Obecnie istnieje możliwości wykorzystania techniki ultraszybkiej chromatografii gazowej do oceny stopnia degradacji olejów...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...