Search results for: supervised classification
-
Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification
Publication -
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Using angular dependence of multibeam echo features in seabed classification
PublicationThe new approach to seabed classification based on processing multibeam sonar echoes is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry measurements or underwater object imaging, are also the promising tool in seafloor identification and classification, having several advantages over conventional single beam echosounders. The proposed seabed classification...
-
Flood Classification in a Natural Wetland for Early Spring Conditions Using Various Polarimetric SAR Methods
PublicationAbstract--- One of the major limitations of remote sensing flood detection is the presence of vegetation. Our study focuses on a flood classification using Radarsat-2 Quad-Pol data in a natural floodplain during leafless, dry vegetation (early spring) state. We conducted a supervised classification of a data set composed of nine polarimetric decompositions and Shannon entropy followed by the predictors' importance estimation to...
-
Classification of Polish wines by application of ultra-fast gas chromatography
PublicationThe potential of ultra-fast gas chromatography (GC) combined with chemometric analysis for classification of wine originating from Poland according to the variety of grape used for production was investigated. A total of 44 Polish wine samples differing in the type of grape (and grape growth region) used for the production as well as parameters of the fermentation process, alcohol content, sweetness, and others which characterize...
-
Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography
PublicationThe food authenticity assessment is an increasingly important issue in food quality and safety. The application of an electronic nose based on ultra-fast gas chromatography technique enables rapid analysis of the volatile compounds from food samples. Due to the fact that this technique provides chemical profiling of natural products, it can be a powerful tool for authentication in combination with chemometrics. In this article,...
-
Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea
PublicationBenthic habitat mapping is a rapidly growing field of underwater remote sensing studies. This study provides the first insight for high-resolution hydroacoustic surveys in the Slupsk Bank Natura 2000 site, one of the most valuable sites in the Polish Exclusive Zone of the Southern Baltic. This study developed a quick and transparent, automatic classification workflow based on multibeam echosounder and side-scan sonar surveys to...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation
PublicationThis work is part of an effort for the development of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. This paper focuses on hazards resulted from the non-use of personal protective equipment (PPE), and examines a few supervised learning techniques to compose the proposed system for the purpose of recognition of three protective...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
seafloor characterisation combined approach using multibeam sonar echo signal processing and image analysis
PublicationThe authors propose the approach to seafloor characterisation which relies on the combined, concurrent use of two different techniques: (i) multibeam sonar image analysis and (ii) multibeam seabed echoes processing. The first technique is based on constructing the grey-level sonar images of the seabed extracted from the echoes received in the consecutive soundings. Then, the set of parameters describing the local region of sonar...
-
Rapid Evaluation of Poultry Meat Shelf Life Using PTR-MS
PublicationThe use of proton transfer reaction mass spectrometry (PTR-MS) for freshness classification of chicken and turkey meat samples was investigated. A number of volatile organic compounds (VOCs) were selected based on the correlation (> 95%) of their concentration during storage at 4 °C over a period of 5 days with the results of the microbial analysis. In order to verify if the selected compounds are not sample-specific, a number...
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublicationA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
Monitoring Trends of Land Use and Land Cover Changes in Rajang River Basin
PublicationIn this study, the spatiotemporal changes in land use and land cover (LULC) were evaluated from 1992 to 2015 for the Rajang River Basin (RRB) located in the Sarawak State of Malaysia. The changes in water bodies cropped lands, and forests were assessed based on the available remotely sensed satellite data. Supervised classification with the Maximum-Likelihood-Algorithm technique was adopted for monitoring the LULC changes using...
-
Enhancing Word Embeddings for Improved Semantic Alignment
PublicationThis study introduces a method for the improvement of word vectors, addressing the limitations of traditional approaches like Word2Vec or GloVe through introducing into embeddings richer semantic properties. Our approach leverages supervised learning methods, with shifts in vectors in the representation space enhancing the quality of word embeddings. This ensures better alignment with semantic reference resources, such as WordNet....
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublicationThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Automatic Clustering of EEG-Based Data Associated with Brain Activity
PublicationThe aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain....
-
Seafloor characterisation using multibeam data: sonar image properties, seabed surface properties and echo properties
PublicationIn the paper, the approach to seafloor characterisation is presented. The multibeam sonars, besides their well verified and widely used applications like high resolution bathymetry and underwater object detection and imaging, are also the promising tool in seafloor characterization and classification, having several advantages over conventional single beam echosounders. The proposed approach relies on the combined, concurrent use...
-
Deep learning-based waste detection in natural and urban environments
PublicationWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
A new method for real-time monitoring of volatiles in frying fumes using proton transfer reaction mass spectrometry with time-of-flight analyse
PublicationTo safeguard the consumers’ well-being, it is necessary to develop novel methods for determination of carcinogens in food, including volatiles generated during frying. The currently used procedures for analysis of volatile fraction of vegetable oils are not based on real-time measurements and thus do not enable the determination of carcinogenic compounds in frying fumes; instead, only the headspace or liquid fraction is sampled....
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Identification of category associations using a multilabel classifier
PublicationDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Identification of Shift in Sowing and Harvesting Dates of Rice Crop (L. Oryza sativa) through Remote Sensing Techniques: A Case Study of Larkana District
PublicationThe present study aimed to determine the impact of climate variability on rice crops in terms of sowing and harvesting dates and crop period. The identification of sowing and harvesting dates were spotted by mask identification, variations in land surface temperature (LST) on a temporal scale in the respective months, and a field-level social inquiry. The study was conducted during a time period (1994–2017), in which geo-referenced...
-
Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model
PublicationThe rise of artificial neural networks (ANNs) has revolutionized various fields of research, demonstrating their effectiveness in solving complex problems. However, there are still unexplored areas where the application of neural networks, particularly convolutional neural network (CNN) models, has yet to be explored. One area is where the application of ANNs is even expected is geomorphology. One of the tasks of geomorphology...
-
Comparison of Deep Learning Approaches in Classification of Glacial Landforms
PublicationGlacial landforms, created by the continuous movements of glaciers over millennia, are crucial topics in geomorphological research. Their systematic analysis affords invaluable insights into past climatic oscillations and augments understanding of long-term climate change dynamics. The classification of these types of terrain traditionally depends on labor-intensive manual or semi-automated methods. However, the emergence of automated...