Wyniki wyszukiwania dla: BONE MODELS
-
Three-Dimensional Printing of Bone Models
PublikacjaThe trabecular bone occurs, for example, in the femoral heads. Understanding the phenomenon of bone tissue degeneration can be the basis for the possibility of looking for alternative methods of surgical treatment of bone loss. The paper presents the results of the trabecular bone model, which was produced in additive manufacturing method with fused filament fabrication technology. The verification of the mechanical behavior of...
-
Biomechanical properties of 3D-printed bone models
PublikacjaBone lesions resulting from large traumas or cancer resections can be successfully treated by directly using synthetic materials or in combination with tissue engineering methods (hybrid). Synthetic or hybrid materials combined with bone tissue’s natural ability for regeneration and biological adaptation to the directions of loading, allow for full recovery of its biological functions. Increasing interest in new production methods...
-
Young’s modulus distribution in the FEM models of bone tissue
PublikacjaThis paper presents how differences of Young’s modulus in adjacent finite elements typical for organic materials such as bone tissue, influence stress calculating. Emphasizing high computational cost of variable Young’s modulus in parts of the model, where the number of finite elements has been raised, the authors wants to prove that new model of finite element which has variable Young’s modulus in its volume needs to be created....
-
Simplifying biochemical tumorous bone remodeling models through variable order derivatives
Publikacja -
Variable Order Differential Models of Bone Remodelling * *This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2013, BoneSys, joint Polish-Portuguese project Modelling and controlling cancer evolution using fractional calculus, PERSEIDS (PTDC/EMS-SIS/0642/2014) and IF/00653/2012
Publikacja -
Chosen aspects of skeletal system modeling: Numerical solid and shell models of femur part
PublikacjaThe purpose of this paper is to present a new method of femur part modeling by using the finite element method. This method treats a femur part as a system composed of cortical and trabecular bone. For the purpose of determining a proper shape of femur part model there were created three models: a) the first one describes a femur part as a solid structure; b) the second one describes a femur part as a connection of cortical bone...
-
Method of Skeletal System Modelling
PublikacjaAn original method of skeletal system modelling is presented in detail. Using DICOM images obtained from CT and PET tests, shell models of nine bones were created (humerus, radius, ulna, scapula, clavicle, femur, tibia, fibula, pelvis). Two methods of bone behaviour are also proposed, the first method treating the bone as a solid structure and the second method treating the bone as a complex porous structure. The behaviour of model...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublikacjaThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Numerical Model of Femur Part
PublikacjaThe aim of the study is to create a new more accurate method of femur part modelling by using the finite element method. According to this new method, a femur part is treated as a complex structure composed of trabecular bone (internal part) and cortical bone (external part). The internal part is modelled as a scaffold, thus the external part is modelled as a coat (i.e. covering). Applying the programme ABAQUS, there were created...
-
FEM approach to modeling of an irregular trabecular structure
PublikacjaThe aim of the study is elaboration of a method for creating irregular scaffolds that can be used to model the behaviour of trabecular bone placed in the proximal epiphysis of the femur. The scope of the study encompasses creating six numerical models of irregular scaffolds (two solid irregular scaffolds, two shell irregular scaffolds and two shell irregular scaffolds with fortification) and performing numerical analysis of the...
-
Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis
PublikacjaFirst metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors’ previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus...
-
The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
PublikacjaBoundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublikacjaPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublikacjaConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
Bending test results of first metatarsophalangeal joint after arthrodesis with medially or dorsally positioned locking plate and lag screw.
Dane BadawczeThe Dataset contains the results of the bending test of first metatarsophalangeal (MTP1) joint specimens after arthrodesis.
-
The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion
PublikacjaObjective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then...
-
Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint
PublikacjaBackground Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Materials and Methods Knee...
-
Medially positioned plate in first metatarsophalangeal joint arthrodesis
PublikacjaObjective The purpose of this study was to biomechanically compare the stability of first metatarsophalangeal (MTP1) joint arthrodesis with dorsally and medially positioned plates. Methods A physical model of the MTP1 joint consists of printed synthetic bones, a titanium locking plate and screws. In the experiments, samples with dorsally and medially positioned plates were subjected to loading of ground load character in a universal...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublikacjaHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Displacements of bones during bending test of first metatarsophalangeal joint after arthrodesis with medially or dorsally positioned locking plate and lag screw.
Dane BadawczeThe Dataset contains the values of displacements of bone control points during the bending test of first metatarsophalangeal (MTP1) joint specimens after arthrodesis.
-
Effect of lag screw on stability of first metatarsophalangeal joint arthrodesis with medial plate
PublikacjaBackground: First metatarsophalangeal joint (MTP-1) arthrodesis is a commonly performed procedure in the treatment of disorders of the great toe. Since the incidence of revision after MTP-1 joint arthrodesis is not insignificant, a medial approach with a medially positioned locking plate has been proposed as a new technique. The aim of the study was to investigate the effect of the application of a lag screw on the stability and...
-
Preparation, characterization, and manufacturing of new polymeric materials for 3D printing for medical applications
PublikacjaThis work concerns the synthesis, formation, and characteristics of new filaments for 3D printing in FDM™/FFF technology for medical purposes. Two types of filaments were developed, i.e. degradable polyurethane and biodegradable polylactide-starch. The influence of the 3D printing process on selected filament properties was investigated. A detailed analysis of the filament formation process by the extrusion method was carried out,...
-
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublikacjaBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Biomechanical testing of bioactive bone cements – a comparison of the impact of modifiers: antibiotics and nanometals
PublikacjaApart from its bone filler and fracture stabilizing function, bone cement can be used as a carrier of bioactive substances, and such modified bone cement can protect the implant against microorganisms, treat local infections and combat bacteria introduced during the surgical procedure. In this paper, the effects of modifying antibiotics and nanosilver on the biomechanical properties of bone cement were examined. The following tests...
-
Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration
PublikacjaBacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin...
-
Development of an AI-based audiogram classification method for patient referral
PublikacjaHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Debonding of coin-shaped osseointegrated implants: Coupling of experimental and numerical approaches
PublikacjaWhile cementless implants are now widely used clinically, implant debonding still occur and is difficult to anticipate. Assessing the biomechanical strength of the bone–implant interface can help improving the understanding of osseointegration phenomena and thus preventing surgical failures. A dedicated and standardized implant model was considered. The samples were tested using a mode III cleavage device to assess the mechanical...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublikacjaDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Effect of aeration of antibiotic-loaded bone cement on its properties and bactericidal effectiveness
PublikacjaBACKGROUND: Antibiotic-loaded bone cements are now widely used in medicine. They are able to locally deliver antibiotic particles and they allow treat or protect against infection. It is assumed that the bactericidal effectiveness of bioactive bone cements depend on the parameters of its production. Hence, the aim of this study was to check the effect of aeration of bone cement before mixing the components on its properties as...
-
ANALYSIS OF BONE WEDGE DIMENSIONS SELECTION METHODS IN HIGH TIBIAL OSTEOTOMY
PublikacjaThe article presents the analysis of methods for selecting dimensions of bone wedge for high tibial osteotomy. The existing methods are described along with the procedure. In the following paragraphs, deficiencies in the selection of bone wedge dimensions and global trends in this field have been demonstrated. Based on the numerical analysis, the problem appearing in the wrong choice of bone wedge imensions was illustrated.
-
Antibacterial evaluation of bioactive modifiers of bone cements: antibiotics, nanometals and chitosan
PublikacjaModern biomaterials in addition to their basic tasks, can serve as carriers of active substance. The release of a bioactive particles allows to locally fight infection or its prevent it. Bone cements additionally to their basic applications in orthopedic surgery can also serve to deliver locally active substances. Currently, only antibiotics are routinely used as modifiers for bone cements. Bioactive bone cements constitute...
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis...
-
Corrosion degradation of spacers – examination of changes in bone cement coating.
PublikacjaSpacer is a special implant used at the time of infection after endoprosthetic surgery. It consists of a metal core and bone cement coating with an antibiotic. In the human body spacers are exposed to degradation processes. This paper looks at the effect of corrosion on spacers. Electrochemical corrosion tests were performer on titanium pins with bone cement coating in two solutions: Ringer’s solution and artificial...
-
Drill holes decrease cancellous bone strength: A comparative study of 33 paired osteoporotic human and 9 paired artificial bone samples
PublikacjaThis study was designed to compare compressive strength of cancellous bone retrieved from the femoral head in a specimen with and without guide wire hole, with comparison to synthetic bone samples. Femoral heads retrieved from 33 patients who sustained femoral neck fractures and underwent hip arthroplasty were cut into cuboids leaving two matching samples from the same femoral head. Similar samples were prepared from synthetic femurs....
-
A new finite element with variable Young's modulus
PublikacjaThe Finite Element Method (FEM) is a numerical technique that is well-established in the field of engineering. However, in biological sciences, it is justtaking its first steps. Bone tissue is an example of biological material which isexposed to high loads in its natural environment. Practically every movementof the body results in changing stress levels in the bone. Nature copes with thisvery well but when human intervention is...
-
Requirements, modifications and methods of mechanical testing of bone cement – literature review
PublikacjaThe Aim of the paper is to show the basic requirements for the bone cement, its modifications in terms of physical, mechanical and biological properties and testing methods. This publication is intended to be a source of systematized basic knowledge regarding the modified bone cement.
-
Antimicrobal and ostheointegration activity of bone cement contains nanometals
PublikacjaPurpose: One of the major problems in bone surgery are infections – especially thoseoccurring in the course of the operating on the patients with lowered immunity system,because they carry the danger of complications. In the Mechanical Department of TechnicalUniversity of Gdansk, there has been carried the research with the use of bone cement andmetal nanoparticles.Design/methodology/approach: The bone cement was used without supplement...
-
Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity
PublikacjaAbstrakt artykułu pt. ''Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity''. The paper describes techniques to improve the bioactivity of titanium and ehnahnce the bone-implant bonding ability by the electrochemical anodization to fabricate titania nanotubular oxide layer.
-
Biological and mechanical properties of bone cement with nanoarticles - in vitro and in vivo research
PublikacjaDespite antibiotic preventive treatment both before and after implant implementation, the risks of infection are real. These infections develop at the implant surface a few months after inserting them into the body. To prevent the development of bacteria and reduce the risk of infection, implants coated with nanoparticles are used. The Mechanical Department of the Technical University of Gdansk carries out research into using bone...
-
The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
PublikacjaThis study compares the strength of the native bone-cement bond and the old-new cement bond under cyclic loading, using third generation cementing technique, rasping and contamination of the surface of the old cement with biological tissue. The possible advantages of additional drilling of the cement surface is also taken into account. Femoral heads from 21 patients who underwent a total hip arthroplasty performed for hip arthritis...
-
The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers
PublikacjaSpacers, in terms of instruments used in revision surgery for the local treatment of postoperative infection, are usually made of metal rod covered by antibiotic-loaded bone cement. One of the main limitations of this temporary implant is the debonding effect of metal–bone cement interface, leading to aseptic loosening. Material selection, as well as surface treatment, should be evaluated in order to minimize the risk of fraction...
-
Formation of Porous Structure of the Metallic Materials Used on Bone Implants
PublikacjaResearch on improvement of structure and fabrication methods of the bone implants are carried out for many years. Research are aimed to shape the structures, that will have a Young's modulus value similar to the value of the human bones Young's modulus. Depending on theporosity, Young's moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding...
-
Implant system for treatment of the orbital floor defects of blowout fractures in the maxillofacial region using polypropylene yarn and bioactive bone cement
PublikacjaFractures in the craniofacial region are a serious problem in terms of treatment. The most reasonable solution is the use of individual implants dedicated to a specific patient. The aim of this study was to develop the implant system specifically for treatment of the orbital floor defects of blowout fractures of maxillofacial region, using polypropylene yarn and bone cement. Three types of bone cement were used to fix the polypropylene...
-
Development of polyurethanes for bone repair
PublikacjaThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications
PublikacjaOne of the biggest challenges in tissue engineering is the manufacturing of porous structures that are customized in size and shape and that mimic natural bone structure. Additive manufacturing is known as a sufficient method to produce 3D porous structures used as bone substitutes in large segmental bone defects. The literature indicates that the mechanical and biological properties of scaffolds highly depend on geometrical features...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublikacjaBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Biomechanics of the medial meniscus in the osteoarthritic knee joint
PublikacjaBackground. Increased mechanical loading and pathological response of joint tissue to the abnormal mechanical stress can cause degradation of cartilage characteristic of knee osteoarthritis (OA). Despite osteoarthritis is risk factor for the development of meniscal lesions the mechanism of degenerative meniscal lesions is still unclear. Therefore, the aim of the study is to investigate the influence of medial compartment knee OA...
-
Comment on permeability conditions in finite element simulation of bone fracture healing
PublikacjaThe most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic study of the influence of the permeability of the callus boundary on the simulated bone healing progress is performed. The results show, that these conditions starts to play significant role with the decrease of the callus size. Typically...
-
Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction
PublikacjaCementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone–implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to...
-
Determinants of the primary stability of cementless acetabular cup implants: A 3D finite element study
PublikacjaPrimary stability of cementless implants is crucial for the surgical success and long–term stability. However, primary stability is difficult to quantify in vivo and the biomechanical phenomena occurring during the press–fit insertion of an acetabular cup (AC) implant are still poorly understood. The aim of this study is to investigate the influence of the cortical and trabecular bone Young's moduli Ec and Et, the interference...