Filtry
wszystkich: 757
Wyniki wyszukiwania dla: MOLECULAR MODELING,MOLECULES,NEURAL NETWORKS,SOLVENTS,VISCOSITY
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublikacjaDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
PublikacjaThe densities of binary liquid mixtures of dimethyl sulfoxide and gamma-butyrolactone at (293.15, 298.15, 303.15 and 313.15) K and viscosity at T=298.15 K have been measured at atmospheric pressure over theentire range of concentration. From these data the excess molar volumes VE at (293.15, 298.15, 303.15 and 313.15) K and the viscosity deviation, the excess entropy, and the excess Gibbs energy of activation for viscous flow at...
-
Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
PublikacjaThe aim of this research was to assess the impact of the components of alkanolamine deep eutectic solvents (DESs) on the physical properties of those DESs and their carbon dioxide capacity. To achieve this goal, novel deep eutectic solvents were synthesized by using 2-(butylamino)ethanol (BAE) as the hydrogen bond donor (HBD), along with tetrabutylammonium bromide TBAB), tetrabutylammonium chloride (TBAC), or tetraethy- lammonium...
-
Deep Eutectic Solvents or Eutectic Mixtures? Characterization of Tetrabutylammonium Bromide and Nonanoic Acid Mixtures
PublikacjaDeep eutectic solvents have quickly attracted the attention of researchers because they better meet the requirements of green chemistry and thus have the potential to replace conventional hazardous organic solvents in some areas. To better understand the nature of these mixtures, as well as expand the possibilities of their use in different industries, a detailed examination of their physical properties, such as density, viscosity,...
-
Deep neural networks for data analysis 24/25
Kursy OnlineThis course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...
-
JOURNAL OF MOLECULAR MODELING
Czasopisma -
Neural networks and deep learning
PublikacjaIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature
Dane BadawczeThis database present results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature. Databse contain one table and 7 figures.
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublikacjaHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
A BODIPY‐Based Molecular Rotor in Giant Unilamellar Vesicles: A Case Study by Polarization‐Resolved Time‐Resolved Emission and Transient Absorption Spectroscopy
PublikacjaBODIPY and BODIPY-derived systems are widely applied as fluorophores and as probes for viscosity detection in solvents and biological media. Their orientational and rotational dynamics in biological media are thus of vital mechanistic importance and extensively investigated. In this contribution, polarization-resolved confocal microscopy is used to determine the orientation of an amphiphilic BODIPY-cholesterol derivative in homogeneous...
-
Temperature-dependent structure-property modeling of viscosity for ionic liquids
PublikacjaIn this paper we present the methodology for assessing the ionic liquids' viscosity at six temperature points (25, 35, 45, 50, 60 and 70 [C]), which utilizes only the in silico approach. The main idea of such assessment is based on the "correction equation" describing the correlation between experimentally measured viscosity and theoretically derived density (calculated with use of molecular mechanics), given at 6 different temperature...
-
Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis
PublikacjaIonic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can also play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in...
-
NEURAL NETWORKS
Czasopisma -
Deep neural networks for data analysis
Kursy OnlineThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublikacjaArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
A survey of neural networks usage for intrusion detection systems
PublikacjaIn recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublikacjaThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Modeling the Networks - ed. 2021/2022
Kursy OnlineThe goal of this course is to present optimization problems for road networks, where the road network is a set of n distinct lines, or n distinct (open or closed) line segments, in the plane, such that their union is a connected region.
-
Paweł Możejko dr hab.
Osoby -
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublikacjaDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Performance Analysis of Convolutional Neural Networks on Embedded Systems
PublikacjaMachine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...
-
Comparative study of neural networks used in modeling and control of dynamic systems
PublikacjaIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublikacjaDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Deep neural networks for data analysis 27/28
Kursy Online -
Deep neural networks for data analysis 25/26
Kursy Online -
Deep neural networks for data analysis 26/27
Kursy Online -
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublikacjaThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublikacjaA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublikacjaThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Traffic Modeling in IMS-based NGN Networks
PublikacjaIn the modern world the need for accurate and quickly delivered information is becoming more and more essential. In order to fulfill these requirements, next generation telecommunication networks should be fast introduced and correctly dimensioned. For this reason proper traffic models must be identified, which is the subject of this paper. In the paper standardization of IMS (IP Multimedia Subsystem) concept and IMS-based NGN...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublikacjaIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
Outlier detection method by using deep neural networks
PublikacjaDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublikacjaThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
PublikacjaWe test the potentials available for elemental carbon, with the scope to choose the potential suitable for the modeling of penta-graphene, the latest two dimensional carbon allotrope. By using molecular statics and molecular dynamics simulations we show that there is only one potential e namely the Tersoff-type potential proposed by Erhart and Albe in 2005 e which is able to correctly describe all the important features of penta-graphene....
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublikacjaBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublikacjaPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublikacjaBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublikacjaHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublikacjaThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublikacjaThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...