Filtry
wszystkich: 1861
-
Katalog
- Publikacje 1423 wyników po odfiltrowaniu
- Czasopisma 184 wyników po odfiltrowaniu
- Konferencje 26 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 70 wyników po odfiltrowaniu
- Wydarzenia 10 wyników po odfiltrowaniu
- Dane Badawcze 75 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: deep reinforcement learning
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Structure and Randomness in Planning and Reinforcement Learning
PublikacjaPlanning in large state spaces inevitably needs to balance the depth and breadth of the search. It has a crucial impact on the performance of a planner and most manage this interplay implicitly. We present a novel method \textit{Shoot Tree Search (STS)}, which makes it possible to control this trade-off more explicitly. Our algorithm can be understood as an interpolation between two celebrated search mechanisms: MCTS and random...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublikacjaMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Deep learning in the fog
PublikacjaIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublikacjaControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
Neural networks and deep learning
PublikacjaIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Deep Learning Approaches in Histopathology
Publikacja -
The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders
Publikacja -
Confirmation Bias in the Course of Instructed Reinforcement Learning in Schizophrenia-Spectrum Disorders
Publikacja -
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep learning for recommending subscription-limited documents
PublikacjaDocuments recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...
-
Decision making process using deep learning
PublikacjaEndüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...
-
The influence of reinforcement on load carrying capacity and cracking of the reinforced concrete deep beam joint
PublikacjaThe paper presents the results of experimental research of the spatial reinforced concrete deep beam systems orthogonally reinforced and with additional inclined bars. Joint of the deep beams in this research was composed of the longitudinal deep beam with a cantilever suspended at the transversal deep beam. The cantilever deep beam was loaded throughout the depth and the transversal deep beam was loaded at the mid-span by longitudinal...
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublikacjaThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
AGAR a Microbial Colony Dataset for Deep Learning Detection
Publikacja -
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublikacjaText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublikacjaWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Force transfer and stress distribution in short cantilever deep beams loaded throughout the depth with a various reinforcement
PublikacjaDeep beams used as the main reinforced concrete structural elements which taking over the load and stiffening construction are often found in high-rise buildings. The architecture of these buildings is sometimes sophisticated and varied, arouse the admiration of the majority of recipients, and thus causing an engineering challenge to correctly design the structural system and force transfer. In such structures is important to shape...
-
Deep learning-based waste detection in natural and urban environments
PublikacjaWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
Deep learning-based waste detection in natural and urban environments
Publikacja -
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublikacjaThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublikacjaBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublikacjaThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublikacjaThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Deep learning for ultra-fast and high precision screening of energy materials
PublikacjaSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublikacjaThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publikacjaconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublikacjaObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublikacjaThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publikacja -
Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves
Publikacja -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publikacja -
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublikacjaThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublikacjaIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublikacjaFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...