Filtry
wszystkich: 508
Wyniki wyszukiwania dla: neural efficiency
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublikacjaIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublikacjaDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublikacjaOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublikacjaThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Topological-numerical analysis of a two-dimensional discrete neuron model
PublikacjaWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublikacjaRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublikacjaSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility
PublikacjaSolubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...
-
System for automatic singing voice recognition
PublikacjaW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
Faults and Fault Detection Methods in Electric Drives
PublikacjaThe chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allow a detection of specific faults. In order to address faults of a complete...
-
Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task
PublikacjaGOAL: Activities of neuronal networks range from action potential firing of individual neurons, coordinated oscillations of local neuronal assemblies, and distributed neural populations. Here, we describe recordings using hybrid electrodes, containing both micro- and clinical macroelectrodes, to simultaneously sample both large-scale network oscillations and single neuron spiking activity in the medial temporal lobe structures...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublikacjaNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublikacjaAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Ensembling noisy segmentation masks of blurred sperm images
PublikacjaBackground: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head. This...
-
Comparison of Absorbed and Intercepted Fractions of PAR for Individual Trees Based on Radiative Transfer Model Simulations
PublikacjaThe fraction of absorbed photosynthetically active radiation (fAPAR) is a key parameter for estimating the gross primary production (GPP) of trees. For continuous, dense forest canopies, fAPAR, is often equated with the intercepted fraction, fIPAR. This assumption is not valid for individual trees in urban environments or parkland settings where the canopy is sparse and there are well-defined tree crown boundaries. Here, the distinction...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublikacjaGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Marine and Cosmic Inspirations for AI Algorithms
PublikacjaArtificial Intelligence (AI) is a scientific area that currently sees an enormous growth. Various new algorithms and methods are developed and many of them meets practical, successful applications. Authors of new algorithms draw different inspirations. Probably the most common one is the nature. For example, Artificial Neural Networks were inspired by the structure of human brain and nervous system while the classic Genetic Algorithm...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublikacjaThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light
PublikacjaVery recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing...
-
The gaseous messenger carbon monoxide is released from the eye into the ophthalmic venous blood depending on the intensity of sunlight
PublikacjaCircadian and seasonal rhythms in daylight affect many physiological processes. In the eye, energy of intense visible light not only initiates a well-studied neural reaction in the retina that modulates the secretory function of the hypothalamus and pineal gland, but also activates the heme oxygenase (HO) to produce carbon monoxide (CO). This study was designed to determine whether the concentration of carbon monoxide (CO) in the...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublikacjaAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment
PublikacjaAtmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...
-
Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool
PublikacjaGPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan
PublikacjaResearch background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the...
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublikacjaW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
Vehicle detector training with minimal supervision
PublikacjaRecently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublikacjaAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Exploring the technological dimension of Autonomous sensory meridian response-induced physiological responses
PublikacjaBackground In recent years, the scientific community has been captivated by the intriguing Autonomous sensory meridian response (ASMR), a unique phenomenon characterized by tingling sensations originating from the scalp and propagating down the spine. While anecdotal evidence suggests the therapeutic potential of ASMR, the field has witnessed a surge of scientific interest, particularly through the use of neuroimaging techniques...
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublikacjaIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublikacjaBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublikacjaPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies
PublikacjaIn this paper, we propose a novel approach for obtaining predictions from per-class scores to improve the accuracy of multi-label classification systems. In a multi-label classification task, the expected output is a set of predicted labels per each testing sample. Typically, these predictions are calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores exceeding a given threshold value...
-
Power of the low alpha brainwaves in the mental imagery experiment in sport: the "Your Home Venue" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the low alpha brainwaves in the mental imagery experiment in sport: the "Slow Start" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The main aim of the study was to examine the cortical correlates of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with...
-
Power of the SMR brainwaves in the mental imagery experiment in sport: the "Start in High Level Championship" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The main aim of the study was to examine the cortical correlates of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with...
-
Power of the low alpha brainwaves in the mental imagery experiment in sport: the "Successful Competition" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the high alpha brainwaves in the mental imagery experiment in sport: the "Your Home Venue" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the high alpha brainwaves in the mental imagery experiment in sport: the "Start in High Level Championship" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The main aim of the study was to examine the cortical correlates of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with...
-
Power of the SMR brainwaves in the mental imagery experiment in sport: the "Fitness Activity" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The main aim of the study was to examine the cortical correlates of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with...
-
Power of the SMR brainwaves in the mental imagery experiment in sport: the "Slow Start" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The main aim of the study was to examine the cortical correlates of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with...
-
Power of the high alpha brainwaves in the mental imagery experiment in sport: the "Training Session" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the SMR brainwaves in the mental imagery experiment in sport: the "Successful Competition" scenario.
Dane BadawczeThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...