Filtry
wszystkich: 1612
-
Katalog
- Publikacje 1319 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 69 wyników po odfiltrowaniu
- Osoby 66 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 34 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 69 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, CNN, NEURAL NETWORKS, OPTIMIZATION ALGORITHMS
-
International Symposium on Parallel Architectures, Algorithms and Networks
Konferencje -
Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding
PublikacjaThe goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Project-Based Collaborative Research and Training Roadmap for Manufacturing Based on Industry 4.0
PublikacjaThe importance of the economy being up to date with the latest developments, such as Industry 4.0, is more evident than ever before. Successful implementation of Industry 4.0 principles requires close cooperation of industry and state authorities with universities. A paradigm of such cooperation is described in this paper stemming from university partners with partly overlapping and partly complementary areas of expertise in manufacturing....
-
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublikacjaBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Janusz Cieśliński prof. dr hab. inż.
OsobyUrodził się 15 kwietnia 1954 r. w Słupsku. Jest absolwentem Wydziału Budowy Maszyn Politechniki Gdańskiej (1978), z którą związał całe swoje życie zawodowe. W 1986 r. obronił doktorat, w 1997 r. – habilitację, w 2006 r. – uzyskał tytuł profesora. Pełnił funkcje prodziekana ds. nauki Wydziału Mechanicznego przez dwie kadencje (2002–2008) oraz kierownika: Katedry Maszyn Przemysłu Spożywczego (2002–2006), Katedry Ekoinżynierii i...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublikacjaThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublikacjaThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Remote Sensing in Vessel Detection and Navigation
PublikacjaThe Special Issue (SI) “Remote Sensing in Vessel Detection and Navigation” highlighted a variety of topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. The 15 papers (from 23 submitted) were published.
-
Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings
PublikacjaThe paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...
-
Szkoła letnia na WETI
WydarzeniaKatedra Algorytmów i Modelowania Systemów WETI organizuje szkołę letnią pt.: "Gdansk Summer School of Advanced Science on Algorithms for Discrete Optimization" dla osób zainteresowanych algorytmiką i teorią grafów.
-
Equal Baseline Camera Array—Calibration, Testbed and Applications
PublikacjaThis paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublikacjaObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders
Publikacjais evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublikacjaAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Identification of High-Value Dataset determinants: is there a silver bullet for efficient sustainability-oriented data-driven development?
PublikacjaOpen Government Data (OGD) are seen as one of the trends that has the potential to benefit the economy, improve the quality, efficiency, and transparency of public administration, and change the lives of citizens, and the society as a whole facilitating efficient sustainability-oriented data-driven services. However, the quick achievement of these benefits is closely related to the “value” of the OGD, i.e., how useful, and reusable...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublikacjaBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Wioleta Kucharska dr hab. inż.
OsobyWioleta Kucharska holds a position as an Associate Professor at the Faculty of Management and Economics of the Gdansk TECH, Gdansk University of Technology, Fahrenheit Universities Union, Poland. Authored 66 peer-reviewed studies published with Wiley, Springer, Taylor & Francis, Emerald, Elsevier, IGI Global, and Routledge. Recently involved in such topics as tacit knowledge and company culture of knowledge, learning, and collaboration....
-
The Double Cognitive Bias of Mistakes: A Measurement Method
PublikacjaThere is no learning without mistakes. However, making mistakes among knowledge workers is s�ll seeing shameful. There is a clash between posi�ve a�tudes and beliefs regarding the power of gaining new (tacit) knowledge by ac�ng in new contexts and nega�ve a�tudes and beliefs toward accompanying mistakes that are sources of learning. These contradictory a�tudes create a bias that is doubled by the other shared solid belief...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publikacja -
A method supporting fault-tolerant optical text recognition from video sequences recorded with handheld cameras
PublikacjaIn the paper a method supporting the optical character recognition from video sequences recorded with cameras without good stabilization is proposed. Due to the presence of various distortions, such as motion blur, shadows, lossy compression artifacts, auto-focusing errors, etc., the quality of individual video frames, e.g., recorded by a smartphone camera, differs noticeably, influencing the results of text recognition, causing...
-
An agent-based framework for distributed learning
Publikacja -
Interpretation and modeling of emotions in the management of autonomous robots using a control paradigm based on a scheduling variable
PublikacjaThe paper presents a technical introduction to psychological theories of emotions. It highlights a usable ideaimplemented in a number of recently developed computational systems of emotions, and the hypothesis thatemotion can play the role of a scheduling variable in controlling autonomous robots. In the main part ofthis study, we outline our own computational system of emotion – xEmotion – designed as a key structuralelement in...
-
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublikacjaShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
The KLC Cultures, Tacit Knowledge, and Trust Contribution to Organizational Intelligence Activation
PublikacjaIn this paper, the authors address a new approach to three organizational, functional cultures: knowledge culture, learning culture, and collaboration culture, named together the KLC cultures. Authors claim that the KLC approach in knowledge-driven organizations must be designed and nourished to leverage knowledge and intellectual capital. It is suggested that they are necessary for simultaneous implementation because no one of...
-
A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
PublikacjaIn this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks
PublikacjaOne of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...
-
Human-Computer Interface Based on Visual Lip Movement and Gesture Recognition
PublikacjaThe multimodal human-computer interface (HCI) called LipMouse is presented, allowing a user to work on a computer using movements and gestures made with his/her mouth only. Algorithms for lip movement tracking and lip gesture recognition are presented in details. User face images are captured with a standard webcam. Face detection is based on a cascade of boosted classifiers using Haar-like features. A mouth region is located in...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublikacjaIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Radar and Sonar Imaging and Processing
PublikacjaThe 21 papers (from 61 submitted) published in the Special Issue “Radar and Sonar Imaging Processing” highlighted a variety of topics related to remote sensing with radar and sonar sensors. The sequence of articles included in the SI dealt with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used.
-
International Conference on Hybrid Artificial Intelligence Systems
Konferencje -
Pacific Rim International Conference on Artificial Intelligence
Konferencje -
National Conference of the American Association for Artificial Intelligence
Konferencje -
International Conference on Artificial Intelligence and Soft Computing
Konferencje -
International Conference on Distributed Computing and Artificial Intelligence
Konferencje -
Australian Conference on Artificial Life and Computational Intelligence
Konferencje -
International Conference on Artificial Intelligence in Science and Technology
Konferencje -
International Conference on Modelling Decisions for Artificial Intelligence
Konferencje -
Florida Artificial Intelligence Research Society Conference
Konferencje -
International Conference on Artificial Intelligence and Pattern Recognition
Konferencje -
Compact global association based adaptive routing framework for personnel behavior understanding
PublikacjaPersonnel behavior understanding under complex scenarios is a challenging task for computer vision. This paper proposes a novel Compact model, which we refer to as CGARPN that incorporates with Global Association relevance and Adaptive Routing Pose estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature representation by compressing the kernel parameter space compared with typical algorithms,...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublikacjaPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublikacjaDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Better polynomial algorithms for scheduling unit-length jobs with bipartite incompatibility graphs on uniform machines
PublikacjaThe goal of this paper is to explore and to provide tools for the investigation of the problems of unit-length scheduling of incompatible jobs on uniform machines. We present two new algorithms that are a significant improvement over the known algorithms. The first one is Algorithm 2 which is 2-approximate for the problem Qm|p j = 1, G = bisubquartic|Cmax . The second one is Algorithm 3 which is 4-approximate for the problem Qm|p...
-
OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.
PublikacjaIn the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...
-
Comparable analysis of PID controller settings in order to ensure reliable operation of active foil bearings
PublikacjaIn comparison to the traditional solutions, active bearings offer great operating flexibility, ensure better operating conditions over a wider range of rotational speeds and are safe to use. In order to ensure optimum bearing performance a bearing control system is used that adapts different geometries during device operation. The selection of optimal controller parameters requires the use of modern optimization methods that make...
-
International Symposium on Modelling and Optimization in Mobile, Ad Hoc, and Wireless Networks
Konferencje -
Towards neural knowledge DNA
PublikacjaIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...