wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: FIRST AND SECOND TYPE BOUNDARY CONDITIONS
-
Quasi-solutions for generalized second order differential equations with deviating arguments
PublikacjaThis paper deal with boundary value problems for generalized second order differential equations with deviating arguments. Existence of quasi-solutions and solutions are proved by monotone iterative method. Examples with numerical results are added.
-
Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method
PublikacjaThis research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure...
-
Under the Fire of Disinformation. Attitudes Towards Fake News in the Ukrainian Frozen War
PublikacjaIn this article, we examine individual attitudes towards fake news in the extreme conditions of a propaganda war, taking into account the complex regional social and historical conditions. For this purpose, within the mobile boundary zone during frozen war in Ukraine, we conducted qualitative research among representatives of generations X and Z (high school teachers and students). Being accustomed to fake news turned out to be...
-
Path integrals formulations leading to propagator evaluation for coupled linear physics in large geometric models
PublikacjaReformulating linear physics using second kind Fredholm equations is very standard practice. One of the straightforward consequences is that the resulting integrals can be expanded (when the Neumann expansion converges) and probabilized, leading to path statistics and Monte Carlo estimations. An essential feature of these algorithms is that they also allow to estimate propagators for all types of sources, including initial conditions....
-
Comment on permeability conditions in finite element simulation of bone fracture healing
PublikacjaThe most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic study of the influence of the permeability of the callus boundary on the simulated bone healing progress is performed. The results show, that these conditions starts to play significant role with the decrease of the callus size. Typically...
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublikacjaIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Flexomagnetic response of buckled piezomagnetic composite nanoplates
PublikacjaIn this paper, the equation governing the buckling of a magnetic composite plate under the influence of an in-plane one-dimensional magnetic field, assuming the concept of flexomagnetic and considering the resulting flexural force and moment, is investigated for the first time by different analytical boundary conditions. To determine the equation governing the stability of the plate, the nonlocal strain gradient theory has been...
-
Second order differential equations with Dirichlet boundary conditions
PublikacjaZastosowano metodę kwazilinearyzacji aby wyznaczyć rozwiązanie przybliżone zagadnienia brzegowego dla równań różniczkowych rzędu drugiego. Pokazano kwadratową (lub prawie kwadratową) zbieżność tego rozwiązania do rozwiazania dokładnego.
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Method of evaluation of lubricating ability of lube oils and fuels in energetistic formulation
PublikacjaThe paper presents an interpretation of operation of a boundary layer of a lubricating medium. A model of the homogeneous Poisson process has been proposed to assess the deterioration process of the layer's operation. The assessment considers the original interpretation of operation of a boundary layer, as a lubricity measure of a boundary layer of any lubricant. In the submitted proposal the operation of a boundary layer is understood...
-
Verification of algorithms determining wave loads on support structure of wind turbine
PublikacjaThe offshore wind turbines require determination of wave loads on their support structure. This structure is fixed and, therefore, this problem is reduced to solving only the diffraction problem, which is determined by Laplace equation and conditions on the following boundaries: on the support structure, on the sea free surface and on its bottom, and at infinity on free surface. The linear problem was applied to determine the wave...
-
Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublikacjaThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublikacjaWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
Applying of thin plate boundary condition in analysis of ship’s magnetic field
PublikacjaThis paper presents computer simulations of ship’s magnetic signatures using a new thin plate boundary condition implemented in the Opera-3d 18R2 program. The paper aims to check the magnetic signatures’ numerical calculations precision of objects using the thin plate boundary conditions and analysis of the magnetic signature of ship with a degaussing system and with and without inner devices.
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublikacjaIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
-
Numerical simulation of hardening of concrete plate
PublikacjaThe paper presents a theoretical formulation of concrete curing in order to predict temperature evolution and strength development. The model of heat flow is based on a well-known Fourier equation. The numerical solution is implemented by means of the Finite Difference Method. In order to verify the model, the in situ temperature measurements at the top plate of a road bridge were carried out. A high agreement between numerical...
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublikacjaWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
Laplace domain BEM for anisotropic transient elastodynamics
PublikacjaIn this paper, we describe Laplace domain boundary element method (BEM) for transient dynamic problems of three-dimensional finite homogeneous anisotropic linearly elastic solids. The employed boundary integral equations for displacements are regularized using the static traction fundamental solution. Modified integral expressions for the dynamic parts of anisotropic fundamental solutions and their first derivatives are obtained....
-
On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions
PublikacjaBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
-
The Dynamical Projectors Method Hydro and Electrodynamics
PublikacjaThe dynamical projectors method proves to reduce a multicomponent problem to the simplest one-component problem with its solution determined by specific initial or boundary conditions. Its universality and application in many different physical problems make it particularly useful in hydrodynamics, electrodynamics, plasma physics, and boundary layer problems. A great variety of underlying mechanisms are included making this book...
-
Systems of boundary value problems of advanced differential equations
PublikacjaThis paper considers the existence of extremal solutions to systems of advanced differential equations with corresponding nonlinear boundary conditions. The monotone iterative method is applied to obtain the existence results. An example is provided for illustration.
-
VARIANT DESIGNING IN the PRELIMINARY SMALL SHIP DESIGN PROCESS
PublikacjaShip designing is a complex process, as the ship itself is a complex, technical multi-level object which operates in the air/water boundary environment and is exposed to the action of many different external and internal factors resulting from the adopted technical solutions, type of operation, and environmental conditions. A traditional ship design process consists of a series of subsequent multistage iterations, which gradually...
-
Implementation of Hermite-Ritz method and Navier’s Technique for Vibration of Functionally Graded Porous Nanobeam Embedded in Winkler-Pasternak Elastic Foundation Using bi-Helmholtz type of nonlocal elasticity
PublikacjaPresent study is devoted to investigating the vibration characteristics of Functionally Graded (FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Experimental and computational study on mechanical behaviour of carpentry corner log joints
PublikacjaThis work concerns experimental and numerical research on carpentry joints used in historic wooden buildings in southeastern Poland and western Ukraine. These structures are mainly sacred buildings, and the types of corner log joints characteristic of this region are primarily saddle-notch and dovetail joints; thus, these two types of joints were analysed in this study. The modelling of historic timber structures is a complex...
-
Rothe’s method for physiologically structured models with diffusion
PublikacjaWe consider structured population models with diffusion and dynamic boundary conditions. The respective approximation, called Rothe’s method, produces positive and exponentially bounded solutions. Its solutions converge to the exact solution of the original PDE.
-
WRF forecasting data of severe weather event in Central Europe on 11 August 2017
Dane BadawczeThis dataset is related to the forecasting of weather conditions in Central Europe on 11 August 2017. During that day, the severe and devastating weather phenomenon (derecho) occurred in Poland. The simulations were carried out using the Weather Research and Forecasting (WRF) model version 4.2.1 with the initial and boundary conditions from the Global...
-
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
PublikacjaThe paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations. We investigate weighted difference methods for these problems. A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems...
-
Boundary problems for fractional differential equations
PublikacjaIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Structured populations with diffusion and Feller conditions
PublikacjaWe prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.
-
Mathematical model of pennate muscle
PublikacjaThe purpose of this study is to create a new mathematical model of pennate striated skeletal muscle. This new model describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into account that rheological properties of muscle fibres depend on their planar arrangement. A new mathematical model is implemented in two types: 1) numerical model of unipennate muscle (unipennate model); 2) numerical model of...
-
On weak solutions of boundary value problems within the surface elasticity of Nth order
PublikacjaA study of existence and uniqueness of weak solutions to boundary value problems describing an elastic body with weakly nonlocal surface elasticity is presented. The chosen model incorporates the surface strain energy as a quadratic function of the surface strain tensor and the surface deformation gradients up to Nth order. The virtual work principle, extended for higher‐order strain gradient media, serves as a basis for defining...
-
On the plastic buckling of curved carbon nanotubes
PublikacjaThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Comparative analysis of different numerical models of a steel radial gate
PublikacjaHydrotechnical structures are important components in water management system and general flooding safety. Their reliability should be ensured since potential damage might lead to catastrophic consequences. Weir gates are considered to be highly vulnerable elements of each hydro power plant, with regard to its dynamic resistance. The aim of the paper is to compare different numerical models and their influence on the results of...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Monotone method for second-order delayed differential equations with boundary value conditions.
PublikacjaIstnienie rozwiązań problemów brzegowych dla równań różniczkowych drugiego rzędu z opóźnionymi argumentami jest dyskutowane w tej pracy. Nierówności różniczkowe rzędu drugiego z odchylonymi argumentami są również przedmiotem badań. Uzyskane wyniki otrzymano stosując technikę iteracji monotonicznych przy założeniu, że prawa strona zagadnienia spełnia jednostronny warunek Lipschitza. Sformułowano też twierdzenia o istnieniu rozwiązań...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublikacjaIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Ordinary differential equations with nonlinear boundary conditions of antiperiodic type.
PublikacjaZastosowano metodę kwazilinearyzacji do równań różniczkowych zwyczajnych z nieliniowymi warunkami brzegowymi typu antyokresowego. Podano warunki dostateczne przy których iteracje monotoniczne są zbieżne do jedynego rozwiązania naszego problemu i jest to zbieżność kwadratowa. Iteracje te są rozwiązaniami odpowiednich równań liniowych z liniowymi warunkami brzegowymi.
-
Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory
PublikacjaWe discuss the strong ellipticity (SE) condition within the Toupin–Mindlin first strain gradient elasticity theory. SE condition is closely related to certain material instabilities and describes mathematical properties of corresponding boundary-value problems. For isotropic solids, SE condition transforms into two inequalities in terms of five gradient-elastic moduli.
-
Numerical analysis of vacuum drying of a porous body in the integrated domain
Publikacjan the present study, the vacuum drying process of an apple slice is numerically modeled based on a control volume method. Transient two-dimensional Navier– Stokes, energy, moisture, and Luikov equations are solved by numerical coding (Fortran) to simulate the simultaneous heat and mass transfer in the ambient and apple slice, respectively. The privilege of using Luikov's model is that the capillary forces are considered, and a...
-
Opracowanie ekspertyzy dotyczącej przyczyn pękania łopatek wirnika SP turbiny PG1 typu 13UP55
PublikacjaZakres badań i analiz dotyczył ustalenia przyczyn pękania elementów łopatek wirnika SPA5 turbiny TG1 typu 13UP55 obejmował: 1. wykonanie badań składu chemicznego stali, z której wykonano łopatki dostarczone przez Zleceniodawcę dwoma metodami, 2. badania mikroobszarów zniszczenia łopatek na mikroskopie elektronowym skaningowym z mikroanalizatorem EDS, 3. badania metalograficzne makroskopowe i mikroskopowe fragmentów...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublikacjaIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
Transient response of oscillated carbon nanotubes with an internal and external damping
PublikacjaThe present works aims at modeling a viscoelastic nanobeam with simple boundary conditions at the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is only based on one unknown variable, in accordance with the...
-
Method of identification of the slide tribological system top layer condition by assessment of the t-02 four-ball tester friction node operation
Publikacjaa method is proposed of the assessment of t-02 four-ball tester friction node operation during extreme unit loads on the tribological system for identification of the top layer condition in that system lubricated with the tested lubricating oil. by identification of the friction node with a thermodynamic system, that operation is treated as an energy generating process of the created servo-layer structure. the friction node operation...
-
CLASSIFICATION OF RESTRAINTS IN THE OPTIMIZATION PROBLEM OF A COLD-FORMED PROFILE
PublikacjaThis work describes the restraints in the optimization problem. This is an important and complicated issue because it requires taking into account a vast range of information related to the design and production. In order to describe the relations of a specific optimization problem, it is essential to adopt appropriate criteria and to collect information on all kinds of restraints, i.e. boundary conditions. The following paper...
-
NUMERICAL SIMULATION OF CRATER CREATING PROCESS IN DYNAMIC REPLACEMENT METHOD BY SMOOTH PARTICLE HYDRODYNAMICS
PublikacjaA theoretical base of SPH method, including the governing equations, discussion of importance of the smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocode simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into the soil caused by falling mass in Dynamic Replacement Method is discussed. An influence of particles spacing on method...
-
Novel Analytic-Numerical Model of Free Convection: with Leading Edge Considered
PublikacjaA novel solution of the free convection boundary problem is represented in analytical form for velocity and temperature for an isothermal vertical plate, as an example. These fields are built as a Taylor Series in the x coordinate with coefficients as functions of the vertical coordinate (y). We restrict ourselves by cubic approximation for both functions. The basic Navier-Stokes and Fourier-Kirchhoff equations and boundary conditions...
-
Simulations of flows in the coastal zone of the Baltic Sea
Dane BadawczeThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...