Filtry
wszystkich: 78
Wyniki wyszukiwania dla: KIRCHHOFF–LOVE SHELL THEORY
-
Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model
PublikacjaIn this paper geometrically nonlinear analysis of functionally graded shells in 6-parameter shell theory is presented. It is assumed that the shell consists of two constituents: ceramic and metal. The mechanical properties are graded through the thickness and are described by power law distribution. Formulation based on 2-D Cosserat constitutive model is used to derive constitutive relation for functionally graded shells. Numerical...
-
Thin-walled frames and grids - statics and dynamics
PublikacjaFrames and grids assembled with thin-walled beams of open cross-section are widely applied in various civil engineering and vehicle or machine structures. Static and dynamic analysis of theses structures may be carried out by means of different models, startingfrom the classical models made of beam elements undergoing the Kirchhoff assumptions to the FE discretization of whole frame into plane elements. The former model is very...
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublikacjaIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
-
Weakly Hydrated Solute of Mixed Hydrophobic–Hydrophilic Nature
PublikacjaInfrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane...
-
Nonlinear FEM analysis of irregular shells composed of fiber metal laminates
PublikacjaThe paper deals with the analysis of failure initiation in shells made of Fiber Metal Laminates (FML). The elas-tic material law for orthotropic lamina is stated accounting for asymmetric in-plane stress and strain measures. The asymmetry results from the employed general nonlinear 6-field shell theory where the generalized dis-placements involve the translation and the proper rotation field. The novelty of the presented results...
-
The point estimate method in a reticulated shell reliability analysis
PublikacjaThe objective of this paper is to present an application of the point estimate method (PEM) that can determine the probabilistic moments for engineering structures. The method is reasonably robust and adequately accurate for a wide range of practical problems. It is a special case of numerical quadrature based on orthogonal polynomials. The main advantage of this method is that, unlike FORM or SORM, it is not necessary to carry...
-
In-plane shear nonlinearity in failure behavior of angle-ply laminated shells
PublikacjaThe paper concerns the progressive failure analysis of laminates with the in-plane shear nonlinearity accounted for.The nonlinear shear response of the layer is described by the constitutive relation treating the stresses as a function of strains. Thus it can be easily incorporated into the displacement-based FEM codes. The brittle failure mechanisms of the fibers and the matrix of the layer are recognized with the use of the Hashin...
-
Extended non-linear relations of elastic shells undergoing phase transitions
PublikacjaThe non-linear theory of elastic shells undergoing phase transitions was proposed by two first authors in J. Elast. 79, 67-86 (2004). In the present paper the theory is extended by taking into account also the elastic strain energy density of the curvilinear phase interface as well as the resultant forces and couples acting along the interface surface curve itself. All shell relations are found from the variational principle of...
-
Examination of selected failure criteria with asymmetric shear stresses in the collapse analysis of laminated shells
PublikacjaThe paper is concerned with failure analysis of composite shells performed with the usage of the nonlinear 6‐parameter shell theory with drilling rotation degree of freedom. This special theory embodies naturally unlim-ited translations and rotations and is suitable for analysis of irregular shells for instance with various, partic-ularly orthogonal, intersections. The presence of the drilling rotation is inherently accompanied...
-
On FEM analysis of Cosserat-type stiffened shells. Static and stability linear analysis
PublikacjaThe present research investigates the theory and numerical analysis of shells stiffened with beams in the framework based on the geometrically exact theories of shells and beams. Shell’s and beam’s kinematics are described by the Cosserat surface and the Cosserat rod respectively, which are consistent including deformation and strain measures. A FEM approximation of the virtual work principle leads to the conforming shell and beam...
-
FEM simulation of laminate failure in the three point bending
PublikacjaThe paper presents a FEM simulation of failure of laminate subjected to the three point bending. The numeri-cal model is based on the equivalent single layer approach with 6-paramater non-linear shell theory kinematics. It is implemented in the non-commercial FEM code. The failure initiation is detected with the use of Tsai-Wu criterion. After the failure onset the progressive failure process is modelled through the appropriate...
-
Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type
PublikacjaThe paper is a continuation of [1] where the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter (the drilling degree of freedom) was presented. Here the formulation is extended to the elasto-plastic range. The material law is based on Cosserat plasticity and employs the well-known Tamura-Tomota-Ozawa (TTO) [2] mixture...
-
On phase equilibrium of an elastic liquid shell with wedge disclination
PublikacjaBased on the six-parameter shell theory we consider the phase equilibrium of a two-phase liquid membrane containing a wedge disclination. The considered problems are related to modelling of phase transitions in biological or lipid membranes. In order to capture the membrane behaviour we consider a special case of elastic shells which energy is invariant under major transformations of a reference configuration and can be treated...
-
Numerical analysis of elastic wave propagation in unbounded structures
PublikacjaThe main objective of this paper is to show the effectiveness and usefulness of the concept of an absorbing layer with increasing damping (ALID) in numerical investigations of elastic wave propagation in unbounded engineering structures. This has been achieved by the authors by a careful investigation of three different types of structures characterised by gradually increasing geometrical and mathematical description complexities....
-
The electronic structure of p-xylylene and its reactivity with vinyl molecules
PublikacjaThe electronic states of p-xylylene molecule were described at the multi-configurational CASSCF/MRMP2 level of theory. The closed-shell singlet state representing the quinoidal p-xylylene molecule was pre-dicted to be the ground electronic state whereas the triplet (benzoidal) and the singlet open-shell states were found to be much higher in energy (by 159 and 423 kJ/mol, respectively, as found at the CASSCF(8,8)/6-31+G(d) level)....
-
On mechanics of piezocomposite shell structures
PublikacjaThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
On the deformation and frequency analyses of SARS-CoV-2 at nanoscale
PublikacjaThe SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublikacjaFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect
PublikacjaThree dimensional chemically cross-linked polymer networks present a great challenge for recycling and reutilization of waste tire rubber. In this work, the covalently cross-linked networks of ground tire rubber (GTR) were degraded heterogeneously under 150 °C due to the synergistic effects of the soybean oil and controlled oxidation. The degradation mechanism was discussed using Horikx theory and Fourier transformation infrared...
-
A Novel Approach to Fully Nonlinear Mathematical Modeling of Tectonic Plates
PublikacjaThe motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both two and three-dimensional approaches. It is the...
-
Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft
PublikacjaLarge deformations and stress analyses in two types of space structures that are intended for people to live in space have been studied in this research. The structure under analysis is assumed to rotate around the central axis to create artificial gravitational acceleration equal to the gravity on the Earth's surface. The analysis is fully dynamic, which is formulated based on the energy method by using the first-order shear deformation...
-
On the non-linear dynamics of torus-shaped and cylindrical shell structures
PublikacjaIn this study, the non-linear dynamic analysis of torus-shaped and cylindrical shell-like structures has been studied. The applied material is assumed as the functionally graded material (FGM). The structures are considered to be used for important machines such as wind turbines. The effects of some environmental factors on the analysis like temperature and humidity have been considered. The strain field has been calculated in...
-
Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core
PublikacjaBased on the equivalent single-layer linear theory for laminated shells, free and forced vibrations of thin cylindrical sandwich panels with magnetorheological core are studied. Five variants of available magnetorheological elastomers differing in their composition and physical properties are considered for smart viscoelastic core. Coupled differential equations in terms of displacements based on the generalized kinematic hypotheses...
-
Thermo-oxidative exfoliation of carbon black from ground tire rubber as potential reinforcement in green tires
PublikacjaConsidering the balance between rapidly growing global tire demand and scarcity of natural resources, recycling and reclaiming techniques of tire rubber have become the state of the art. Herein, we set out to implement a self-designed thermo-oxidative reactor for the exfoliation of carbon black (CB) from ground tire rubber, which is efficiently functioned under a thermo-oxidative reclaiming condition without any additive. The exfoliation...
-
Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein
PublikacjaMany hypotheses can be encountered explaining the mechanism of action of antifreeze proteins. One widespread theory postulates that the similarity of structural properties of solvation water of antifreeze proteins to ice is crucial to the antifreeze activity of these agents. In order to investigate this problem, the structural properties of solvation water of the hyperactive antifreeze protein from Choristoneura fumiferana were...
-
Destruction of shell structures under the dynamic load on the human skull trauma basis
PublikacjaThe main aim of this work is to investigate patterns of potential orbital bone fractures due to mechanical injuries. The solution of the main problem is followed by analysis of several testing examples having straight correlation with civil engineering structures, in which materials of wide range of stiffness are applied. To solve the main problem, the three-dimensional finite element method (FEM) model of the orbital region has...
-
Applications of Tensor Analysis in Continuum Mechanics
PublikacjaA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublikacjaWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...