Wyniki wyszukiwania dla: CONVOLUTIONAL MODELS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: CONVOLUTIONAL MODELS

Wyniki wyszukiwania dla: CONVOLUTIONAL MODELS

  • Neural network agents trained by declarative programming tutors

    Publikacja

    This paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning

    Publikacja
    • K. Kąkol

    - Rok 2023

    The Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...

    Pełny tekst do pobrania w portalu

  • An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks

    Publikacja

    - Journal of Artificial Intelligence and Soft Computing Research - Rok 2023

    In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...

    Pełny tekst do pobrania w portalu

  • Investigating Feature Spaces for Isolated Word Recognition

    Publikacja

    - Rok 2018

    Much attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...

  • Urban scene semantic segmentation using the U-Net model

    Publikacja

    - Rok 2023

    Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Detecting Lombard Speech Using Deep Learning Approach

    Publikacja
    • K. Kąkol
    • G. Korvel
    • G. Tamulevicius
    • B. Kostek

    - SENSORS - Rok 2023

    Robust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...

    Pełny tekst do pobrania w portalu

  • Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm

    Publikacja
    • K. Thiagarajan
    • M. Manapakkam Anandan
    • A. Stateczny
    • P. Bidare Divakarachari
    • H. Kivudujogappa Lingappa

    - Remote Sensing - Rok 2021

    Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...

    Pełny tekst do pobrania w portalu

  • Neural network training with limited precision and asymmetric exponent

    Publikacja

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Pełny tekst do pobrania w portalu

  • Deep neural networks for human pose estimation from a very low resolution depth image

    The work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....

    Pełny tekst do pobrania w portalu

  • Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks

    Estimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...

    Pełny tekst do pobrania w portalu

  • Digits Recognition with Quadrant Photodiode and Convolutional Neural Network

    Publikacja

    - Rok 2018

    In this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Evaluation of aspiration problems in L2 English pronunciation employing machine learning

    The approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...

    Pełny tekst do pobrania w portalu

  • Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects

    Publikacja

    - Journal of Environmental Chemical Engineering - Rok 2024

    Wastewater treatment is an important topic for improving water quality and environmental protection, and artificial intelligence has become a powerful tool for wastewater treatment. This work provides research progress and a literature review of artificial intelligence applied to wastewater treatment based on the visualization of bibliometric tools. A total of 3460 publications from 2000 to 2023 were obtained from the Web of Science...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Explainable machine learning for diffraction patterns

    Publikacja
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Rok 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Pełny tekst do pobrania w portalu

  • Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations

    Publikacja

    Deployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory

    Publikacja

    - EXPERT SYSTEMS - Rok 2024

    Sentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Data augmentation for improving deep learning in image classification problem

    Publikacja

    These days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION

    Publikacja
    • M. Maj
    • J. Borkowski
    • J. Wasilewski
    • S. Hrynowiecka
    • A. Kastrau
    • M. Liksza
    • P. Jasik
    • M. Treder

    - Rok 2022

    Objective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Vehicle detector training with minimal supervision

    Publikacja

    Recently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...

  • Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier

    Publikacja

    - Healthcare - Rok 2023

    In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....

    Pełny tekst do pobrania w portalu

  • Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

    Publikacja

    - ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE - Rok 2024

    Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep convolutional neural network for predicting kidney tumour malignancy 

    Publikacja

    - Rok 2021

    Purpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction

    Publikacja

    - Scientific Reports - Rok 2023

    This work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...

    Pełny tekst do pobrania w portalu

  • Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth

    Publikacja

    - Journal of Imaging - Rok 2023

    As healthcare costs continue to rise, finding affordable and non-invasive ways to monitor vital signs is increasingly important. One of the key metrics for assessing overall health and identifying potential issues early on is respiratory rate (RR). Most of the existing methods require multiple steps that consist of image and signal processing. This might be difficult to deploy on edge devices that often do not have specialized...

    Pełny tekst do pobrania w portalu