Filtry
wszystkich: 10627
-
Katalog
- Publikacje 9331 wyników po odfiltrowaniu
- Czasopisma 203 wyników po odfiltrowaniu
- Konferencje 42 wyników po odfiltrowaniu
- Osoby 198 wyników po odfiltrowaniu
- Wynalazki 1 wyników po odfiltrowaniu
- Projekty 22 wyników po odfiltrowaniu
- Aparatura Badawcza 8 wyników po odfiltrowaniu
- Kursy Online 216 wyników po odfiltrowaniu
- Wydarzenia 11 wyników po odfiltrowaniu
- Dane Badawcze 595 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: PREDICTION ACCURACY MECHANISTIC MODEL MACHINE LEARNING NITROUS OXIDE NITRIFICATION GHG MITIGATION
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publikacja—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer
PublikacjaIn this study, eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting (LightGBM) algorithms were used to model-predict the drying characteristics of banana slices with an indirect solar drier. The relationships between independent variables (temperature, moisture, product type, water flow rate, and mass of product) and dependent variables (energy consumption and size reduction) were established. For energy consumption,...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Machine learning applied to bi-heterocyclic drugs recognition
Publikacja -
Stacking-Based Integrated Machine Learning with Data Reduction
Publikacja -
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Machine learning system for estimating the rhythmic salience of sounds.
PublikacjaW artykule przedstawiono badania dotyczące wyszukiwania danych rytmicznych w muzyce. W pracy przedstawiono postać funkcji rankingujacej poszczególnych dźwięków frazy muzycznej. Opracowano metodę tworzenia wszystkich możliwych hierarchicznych struktur rytmicznych, zwanych hipotezami rytmicznymi. Otrzymane hipotezy są następnie porządkowane w kolejności malejącej wartości funkcji rankingującej, aby ustalić, która ze znalezionych...
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Publikacja -
Machine Learning for Sensorless Temperature Estimation of a BLDC Motor
Publikacja -
Machine Learning Modelling and Feature Engineering in Seismology Experiment
Publikacja -
Data Reduction Algorithm for Machine Learning and Data Mining
Publikacja -
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublikacjaAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
New insights into modeling two-step nitrification in activated sludge systems – The effects of initial biomass concentrations, comammox and heterotrophic activities
PublikacjaIn this study, the conventional two-step nitrification model was extended with complete ammonia oxidation (comammox) and heterotrophic denitrification on soluble microbial products. The data for model calibration/validation were collected at four long-term washout experiments when the solid retention time (SRT) and hydraulic retention time (HRT) were progressively reduced from 4 d to 1 d, with mixed liquor suspended solids (MLSS)...
-
Detection and Mitigation of GPS Spoofing Based on Antenna Array Processing
PublikacjaIn this article authors present an application of spatial processing methods for GPS spoofing detection and mitigation. In the first part of this article, a spoofing detection method, based on phase delay measurements, is proposed. Accuracy and precision of phase delay estimation is assessed for various qualities of received signal. Spoofing detection thresholds are determined. Efficiency of this method is evaluated in terms of...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
JOz Model AiR
Kursy Online -
Testing motional accuracy of a manufacturing machine - a task imposed on modern maintenance
PublikacjaArtykuł dotyczy zagadnień utrzymania ruchu maszyn w powiązaniu z problemami parametryzacji zautomatyzowanych napędów. Przedstawiono krótki przegląd i kierunki rozwoju wspomagania komputerowego w ramach zakładowych systemów utrzymania ruchu. Zwrócono uwagę na pomijanie w popularnie publikowanych graficznych modelach systemów informatycznych CIM, ich podsystemów dedykowanych dla wspomagania utrzymania ruchu maszyn, podczas gdy takie...
-
Mathematical modelling of two-step nitrification-denitrification for treatment of sludge digester liquors: influence of nitrite (NO2-N) on the process kinetics
PublikacjaSeparate treatment of the sludge digester liquors is an alternative for expansion of the mainstream treatment line. In order to reduce the oxygen demand for nitrification and organic carbon demand for denitrification, a shortcut in the nitrogen conversion pathway has been promoted in recent years, i.e. nitrification-denitrification via NO2-N instead of NO3-N. Although NO2-N is a common intermediate product of nitrification and...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning 2022/2023
Kursy Online -
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Reduced model of gyroscopic system
PublikacjaThe paper presents the method of model reduction for the system with gyroscopic interactions. Two methods were used to obtain the approximate discrete models of the continuous structure: the modal decomposition method and the rigid finite element method. The first approach is used for this part of a system for which it is easy to formulate orthogonality conditions, meanwhile the second one is used for other part. The method enables...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublikacjaMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Electromagnetic interference frequencies prediction model of flyback converter for snubber design
PublikacjaSnubber design for flyback converters usually requires experimental prototype measurements or simulation based on accurate and complex models. In this study simplified circuit modelling of a flyback converter has been described to dimension snubbers in early stage of design process. Simulation based prediction of the transistor and diode ringing frequencies has been validated by measurements in a prototype setup. In that way obtained...
-
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publikacja -
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Applicability of null-steering for spoofing mitigation in civilian GPS
PublikacjaCivilian GPS signals are currently used in many critical applications, such as precise timing for power grids and telecommunication networks. Spoofing may cause their improper functioning. It is a threat which emerges with the growing availability of GPS constellation simulators and other devices which may be used to perform such attack. Development of the effective countermeasures, covering detection and mitigation, is necessary...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Incorporation of the complete ammonia oxidation (comammox) process for modeling nitrification in suspended growth wastewater treatment systems
PublikacjaThe newly discovered process complete ammonia oxidation (comammox) has changed the traditional under-standing of nitrification. In this study, three possible concepts of comammox were developed and incorporated as part of an extended two-step nitrification model. For model calibration and validation, two series of long-term biomass washout experiments were carried out at 12 ◦C and 20 ◦C in a laboratory sequencing batch reactor....
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublikacjaThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Szymon Zaporowski mgr inż.
Osoby -
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
International Journal of Machine Learning and Cybernetics
Czasopisma -
International Journal of Machine Learning and Computing
Czasopisma -
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublikacjaThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment
PublikacjaAtmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...
-
Rating Prediction with Contextual Conditional Preferences
PublikacjaExploiting contextual information is considered a good solution to improve the quality of recommendations, aiming at suggesting more relevant items for a specific context. On the other hand, recommender systems research still strive for solving the cold-start problem, namely where not enough information about users and their ratings is available. In this paper we propose a new rating prediction algorithm to face the cold-start...
-
User satisfaction model
PublikacjaRaport techniczny - opis metody ''User Satisfaction Methods'' wykorzystywanej w projektowaniu komunikacji człowiek-komputer oraz doskonaleniu interfejsu użytkownika.
-
Integrating Statistical and Machine‐Learning Approach for Meta‐Analysis of Bisphenol A‐Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival
PublikacjaBisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta‐analysis of such datasets is, however, very complicated for various...
-
Intelligent Decision Forest Models for Customer Churn Prediction
PublikacjaCustomer churn is a critical issue impacting enterprises and organizations, particularly in the emerging and highly competitive telecommunications industry. It is important to researchers and industry analysts interested in projecting customer behavior to separate churn from non‐churn consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along with the exorbitant expense of gaining new ones....
-
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
PublikacjaBackground: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016...
-
Machine Design 2
Kursy OnlineMachine Design 2, what else?
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Codesigned Digital Tools for Social Engagement in Climate Change Mitigation
PublikacjaDigital technologies and economies can strengthen participative processes and data- and knowledge-based sustainable urban development. It can also accelerate social integration and the efforts of urban dwellers towards more resilient urban environments. Gap: Most of the tools that strengthen participatory processes were not cocreated with stakeholders. Research shows that codesigned platforms driven by new technological advances...
-
Journal of Machine Construction and Maintenance
Czasopisma -
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
A simple model of circular hydraulic pump
PublikacjaRozpatrzono warunki powstawania osiowosymetrycznego uskoku hydraulicznego. Przedstawiono model, w którym rozpatrzono obecność dodatkowych strat w równaniu Bernoulliego. Przyczyniają się one do powstawania dodatkowego wiru w miejscu uskoku. Porównanie z wynikami badań eksperymentalnych potwierdza słuszność przyjętych tez.