Filtry
wszystkich: 965
-
Katalog
- Publikacje 677 wyników po odfiltrowaniu
- Czasopisma 10 wyników po odfiltrowaniu
- Konferencje 8 wyników po odfiltrowaniu
- Osoby 37 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 36 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 191 wyników po odfiltrowaniu
Wyniki wyszukiwania dla: TELEMEDICINE, DEEP LEARNING, MULTIMEDIA DATABASES, BIG DATA
-
Deep learning-based waste detection in natural and urban environments
Publikacja -
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis
PublikacjaWe proposed to apply a specific machine learning technique called Self-Organising Maps (SOM) to identify similarities in the performance of muscles around human temporomandibular joint (TMJ). The performance was assessed by measuring muscle activation with the use of surface electromyography (sEMG). SOM algorithm used in the study was able to find clusters of data in sEMG test results. The SOM analysis was based on processed sEMG...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublikacjaObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublikacjaThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publikacja -
Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves
Publikacja -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publikacja -
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
International Journal of Multimedia Data Engineering & Management
Czasopisma -
Learning from examples with data reduction and stacked generalization
Publikacja -
Stacking-Based Integrated Machine Learning with Data Reduction
Publikacja -
An ML-extended conceptual framework for implementing temporal big data analytics in organizations to support their agility
Publikacja -
Paweł Czarnul dr hab. inż.
OsobyPaweł Czarnul uzyskał stopień doktora habilitowanego w dziedzinie nauk technicznych w dyscyplinie informatyka w roku 2015 zaś stopień doktora nauk technicznych w zakresie informatyki(z wyróżnieniem) nadany przez Radę Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej w roku 2003. Dziedziny jego zainteresowań obejmują: przetwarzanie równoległei rozproszone w tym programowanie równoległe na klastrach obliczeniowych,...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublikacjaWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Improved estimation of dynamic modulus for hot mix asphalt using deep learning
Publikacja -
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care
Publikacja -
An A-Team approach to learning classifiers from distributed data sources
Publikacja -
An A-Team Approach to Learning Classifiers from Distributed Data Sources
Publikacja -
Deep Data Analysis of a Large Microarray Collection for Leukemia Biomarker Identification
Publikacja -
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publikacja -
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Jerzy Proficz dr hab. inż.
OsobyJerzy Proficz – dyrektor Centrum Informatycznego Trójmiejskiej Akademickiej Sieci Komputerowej (CI TASK) na Politechnice Gdańskiej. Uzyskał stopień naukowy doktora habilitowanego (2022) w dyscyplinie: Informatyka techniczna i telekomunikacja. Autor i współautor ponad 50 artykułów w czasopismach i na konferencjach naukowych związanych głównie z równoległym przetwarzaniem danych na komputerach dużej mocy (HPC, chmura obliczeniowa). Udział...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publikacja -
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publikacja -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publikacja -
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publikacja -
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Distance learning trends: introducing new solutions to data analysis courses
PublikacjaNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
Stacking and rotation-based technique for machine learning classification with data reduction
Publikacja -
Learning from Imbalanced Data Using Over-Sampling and the Firefly Algorithm
Publikacja -
Learning sperm cells part segmentation with class-specific data augmentation
PublikacjaInfertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation....
-
Kamila Kokot-Kanikuła mgr
OsobyKamila Kokot-Kanikuła pracuje w Bibliotece Politechniki Gdańskiej w Sekcji Budowy Zbiorów Cyfrowych i Multimedialnych na stanowisku starszego bibliotekarza. Jest absolwentką Instytutu Historycznego oraz Informacji Naukowej i Bibliotekoznawstwa na Uniwersytecie Wrocławskim. Główne kierunki zainteresowań to starodruki, biblioteki cyfrowe, repozytoria instytucjonalne, Otwarte Zasoby Edukacyjne, Open Access i Open Data. W bibliotece...
-
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publikacja -
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublikacjaBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublikacjaShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
Learning from Imbalanced Data Streams Based on Over-Sampling and Instance Selection
Publikacja -
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublikacjaAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Journal of Big Data
Czasopisma -
Experimental investigations and prediction of WEDMed surface of nitinol SMA using SinGAN and DenseNet deep learning model
Publikacja -
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublikacjaQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.