Wyniki wyszukiwania dla: IMAGE SEGMENTATION, DEEP LEARNING, AUTOMATED BEHAVIOR RECOGNITION, RODENT SOCIAL BEHAVIOR
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Marta Kuc-Czarnecka dr
OsobyMarta Kuc-Czarnecka jest zastępczynią kierownika Katedry Statystyki i Ekonomii na Wydziale Zarządzania i Ekonomii Politechniki Gdańskiej. Pełni również funkcję pełnomocniczki Dziekana ds. akredytacji AMBA. Jest współzałożycielką Rethinking Economics Gdańsk oraz członkinią Fundacji im. Edwarda Lipińskiego na rzecz promocji pluralizmu w naukach ekonomicznych. W latach 2018-2022 była ekspertką Europejskiej Fundacji na Rzecz Poprawy...
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublikacjaIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublikacjaSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Gemba Kaizen: Influencing individuals behavior for better - an approach to social marketing
PublikacjaThe idea of providing the Gemba Kaizen philosophy to a social level can benefit not only individuals, but the society as well. The Japanese philosophy for improvement or change for better may serve companies that are looking for increasing its value by quality management. The same principles when implemented in a society may improve quality of life of its inhabitants and help solving social problems. The use of social marketing...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
About being entrepreneurial in challenging environments – theorizing on the social enterprise behavior in Poland
PublikacjaEntrepreneurial behaviors in challenging institutional environments have been widely investigated in the literature. One of the characteristics of these environments is resource scarcity. This is particularly valid in the context of social entrepreneurship. The aim of this paper is to identify entrepreneurial behaviors in social entrepreneurship and what is happening behind these processes in the context of transition country,...
-
An automated, low-latency environment for studying the neural basis of behavior in freely moving rats
PublikacjaBackground Behavior consists of the interaction between an organism and its environment, and is controlled by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consisting of only binary trial outcomes). Results To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable interactive arena for freely moving rats with multiple feeding...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publikacja -
LEARNING & BEHAVIOR
Czasopisma -
RFM-based repurchase behavior for customer classification and segmentation
Publikacja -
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublikacjaHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Animal Learning and Behavior
Czasopisma -
Applicability of Emotion Recognition and Induction Methods to Study the Behavior of Programmers
PublikacjaRecent studies in the field of software engineering have shown that positive emotions can increase and negative emotions decrease the productivity of programmers. In the field of affective computing, many methods and tools to recognize the emotions of computer users were proposed. However, it has not been verified yet which of them can be used to monitor the emotional states of software developers. The paper describes a study carried...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Behavior and Social Issues
Czasopisma -
SOCIAL BEHAVIOR AND PERSONALITY
Czasopisma -
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
What are the true volumes of SEGA tumors? Reliability of planimetric and popular semi-automated image segmentation methods
Publikacja -
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publikacjaconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublikacjaDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publikacja -
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publikacja -
Cyberpsychology Behavior and Social Networking
Czasopisma -
Journal of Health and Social Behavior
Czasopisma -
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublikacjaBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Agata Ewa Chudzicka-Czupała
OsobyShe is a specialist in psychology (work and organizational psychology, health psychology). She works at the SWPS University, Department of Psychology, Poland. She conducts research in the field of health psychology, dealing with the psychological costs of volunteering, participation in traumatic events, determinants of mental health, and stress in difficult situations such as pandemics or war. In researching these phenomena,...
-
Asian Journal of Social Health and Behavior
Czasopisma -
International Journal of Cyber Behavior, Psychology and Learning
Czasopisma -
Piotr Paradowski dr
OsobyDr Piotr Paradowski's areas of expertise in quantitative social science methods include truncated and censored models, quantile regressions, survival analysis, panel data models, discrete regressions and qualitative choice models, instrumental variable estimation, and hierarchical modeling. He is also an expert in statistical matching and statistical methods to handle missing data. In addition, he conducts research on income and...
-
Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures
PublikacjaThis work concerns the numerical modeling of the deformation process and mechanical properties of structures obtained by the additive method laser power bed fusion (LPBF). The investigation uses diamond structures of Ti–6Al–4V titanium implantation alloy with various relative densities. To model the process of tensile deformation of the materials, geometric models were used, mapping the realistic shape of the examined structures....
-
The analysis of temperature changes of the saliva traces left on the fur during laboratory rats social contacts
PublikacjaAutomatic analysis of complex rodent social be- havior, especially aggressive ones, is of important scientific interest. In this paper we analyze the properties of the data created as a result of aggressive rodent social behavior. Detec- tion of specific aggressive behaviors is based on the event of leaving traces of saliva on the fur of the attacked individual, which are clearly visible in the thermal imaging. The traces change...
-
Thermal imaging in automatic rodent’s social behaviour analysis
PublikacjaLaboratory rodent social behaviour analysis is an extremely important task for biological, medical and pharmacological researches. In this work thermal images features that facilitate analysis are presented. Methods to distinguish objects on the basis of thermal distribution are tested. Actions of grooming or biting one rodent by another - important social behaviour incidents - are clearly visible...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublikacjaIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Journal of Human Behavior in the Social Environment
Czasopisma -
SegSperm - a dataset of sperm images for blurry and small object segmentation
Dane BadawczeMany deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.
-
Geotechnics
Kursy OnlineThe course is divided into two parts. The first is related to in-situ tests and their applications for the design of shallow and deep foundations. The second part is related to models of soil behavior and numerical analysis in geotechnical engineering.
-
Deep neural networks for data analysis
Kursy OnlineThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublikacjaThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...