Filtry
wszystkich: 37
Wyniki wyszukiwania dla: phonon calculations
-
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublikacjaThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
Strong-coupling superconductivity of SrIr2 and SrRh2 : Phonon engineering of metallic Ir and Rh
PublikacjaExperimental and theoretical studies on superconductivity in SrIr2 and SrRh2 Laves phases are presented. The measured resistivity, heat capacity, and magnetic susceptibility confirm the superconductivity of these compounds with Tc = 6.07 and 5.41 K, respectively. Electronic structure calculations show that the Fermi surface is mostly contributed by 5d (4d) electrons of Ir (Rh), with Sr atoms playing the role of electron donors....
-
Soft-mode enhanced type-I superconductivity in LiPd2Ge
PublikacjaThe synthesis, crystal structure, and physical properties (magnetization, resistivity, heat capacity) in combination with theoretical calculations of the electronic structure and phonon properties are reported for intermetallic compounds LiPd2X (X = Si, Ge, and Sn). LeBail refinement of powder x-ray diffraction data confirms that all compounds belong to the Heusler family (space group Fm-3m, No. 225). The lattice parameter increases...
-
Superconductivity in LiGa2Ir Heusler type compound with VEC = 16
PublikacjaPolycrystalline LiGa2Ir has been prepared by a solid state reaction method. A Rietveld refnement of powder x-ray difraction data confrms a previously reported Heusler-type crystal structure (space group Fm-3m, No. 225) with lattice parameter a= 6.0322(1) Å. The normal and superconducting state properties were studied by magnetic susceptibility, heat capacity, and electrical resistivity techniques. A bulk superconductivity with...
-
Noncentrosymmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling
PublikacjaThe layered, noncentrosymmetric heavy element PbTaSe2 is found to be superconducting. We report its electronic properties accompanied by electronic-structure calculations. Specific heat, electrical resistivity, and magnetic-susceptibility measurements indicate that PbTaSe2 is a moderately coupled, type-IIBCSsuperconductor (Tc = 3.72 K, Ginzburg–Landau parameter κ = 17) with an electron-phonon coupling constant of λep = 0.74. Electronic-structure...
-
Superconductivity in Bismuth Pyrochlore Lattice Compounds RbBi2 and CsBi2: The Role of Relativistic Effects
PublikacjaSuperconducting properties of two bismuthide intermetallic compounds, RbBi2 and CsBi2, were studied by means of experimental measurements and ab initio calculations. We show that in both compounds, the superconductivity emerges from the pyrochlore Bi lattice and its formation is heavily influenced by relativistic effects. Based on our analysis of the effect of spin–orbit coupling on the electron–phonon coupling, we suggest a possible...
-
Rattling-enhanced superconductivity in MV2Al20 (M = Sc, Lu, Y) intermetallic cage compounds
PublikacjaPolycrystalline samples of four intermetallic compounds: MV2Al20 (M=Sc, Y, La, and Lu) were synthesized using an arc-melting technique. The crystal structures were analyzed by means of powder x-ray diffraction and Rietveld analysis, and the physical properties were studied by means of heat capacity, electrical resistivity, and magnetic susceptibility measurements down to 0.4 K. For ScV2Al20, LuV2Al20, and YV2Al20, superconductivity...
-
Superconducting properties and electronic structure of NaBi
PublikacjaResistivity, dc magnetization, and heat capacity measurements are reported for superconducting NaBi. Tc, the electronic contribution to the specific heat γ, the ΔCp/γTc ratio, and the Debye temperature are found to be 2.15 K, 3.4 mJ mol−1 K−2, 0.78, and 140 K respectively. The calculated electron–phonon coupling constant (λep = 0.62) implies that NaBi is a moderately coupled superconductor. The upper critical field and coherence...
-
Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors
PublikacjaLa3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the...
-
RuAl6—An Endohedral Aluminide Superconductor
PublikacjaSuperconductivity is reported in an endohedral aluminide compound, RuAl6, with Tc = 1.21 K. The normalized heat capacity jump at Tc, ΔC/γTc = 1.58, confirms bulk superconductivity. The Ginzburg–Landau parameter of κ = 9.5 shows that RuAl6 is a type-II superconductor. Electronic structure calculations for RuAl6 are explored in comparison to its structural analogue ReAl6 (Tc = 0.74 K). The stability of the phases is discussed in...
-
Structure redetermination, transport and thermal properties of the YNi3Al9 compound
PublikacjaSingle crystals of completely ordered variant of the YNi3Al9 compound were grown by self-flux method with excess of aluminum. The crystal structure of the title compound was redetermined from single crystal X-ray diffraction data. The structure adopts ErNi3Al9 type, space group R32, parameters of the unit cell a = 7.2838(2) Å, c = 27.4004(8) Å. The growth of relatively large single crystals of the YNi3Al9 compound, having completely...
-
Superconductivity in the intermetallic compound Zr5Al4
PublikacjaPolycrystalline Zr5Al4 was synthesized using the arc-melting method. Powder X-ray diffraction confirms the previously reported crystal structure of the Ti5Ga4-type P63/mcm with lattice parameters: a = 8.4312(6) A , and c = 5.7752(8) A . Electrical resistivity and low-temperature magnetic susceptibility measurements indicate that Zr5Al4 exhibits superconducting behavior below 2 K. The normalized heat capacity jump at Tc= 1.82 K...
-
Superconductivity in CaBi2
PublikacjaSuperconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is DC/gTc = 1.41, confirming bulk superconductivity;...
-
Generalized Einstein relation in disordered organic semiconductors: Influence of the acoustic phonons–charge carriers scattering
PublikacjaIn this work, we analyze the generalized Einstein relation for disordered organic semiconductors with a non-equilibrium Druyvesteyn-type distribution function. The Druyvesteyn behavior of hot electrons in a solid state is associated with the acoustic phonons–charge carriers scattering. Such a case has been experimentally demonstrated in electroluminescent inorganic rare–earth–doped zinc chalcogenides. Therefore, we can assume that,...
-
Chemical Origins of Optically Addressable Spin States in Eu2(P2S6) and Eu2(P2Se6)
PublikacjaLanthanide materials with a 4f7 electron configuration (8S7/2) offer an exciting system for realizing multiple addressable spin states for qubit design. While the 8S7/2 ground state of 4f7 free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu2+ attractive as it mirrors Gd3+ in exhibiting...
-
Iridium 5d -electron driven superconductivity in ThIr3
PublikacjaA polycrystalline sample of superconducting ThI r 3 was obtained by arc-melting Th and Ir metals. Powder x-ray diffraction revealed that the compound crystalizes in a rhombohedral crystal structure (R-3m, s.g. #166) with the lattice parameters: a = 5.3394 ( 1 ) Å and c = 26.4228 ( 8 ) Å . Normal and superconducting states were studied by magnetic susceptibility, electrical resistivity, and heat capacity measurements. The results...
-
Pressure effects on the superconductivity of the HfPd2Al Heusler compound: Experimental and theoretical study
PublikacjaPolycrystalline HfPd2Al has been synthesized using the arc-melting method and studied under ambient-pressure conditions by x-ray diffraction from room temperature up to 450 °C. High-pressure x-ray diffraction up to 23 GPa was also performed using Diacell-type membrane diamond anvil cells. The estimated linear thermal expansion coefficient was found to be α=1.40(3)×10−5K−1, and the bulk modulus derived from the fit to the third-order...
-
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
PublikacjaOver the past few years, metal halide perovskite solar cells have made significant advances. Currently, the single-junction perovskite solar cells reach a conversion efficiency of 25.7%. Perovskite solar cells with a wide band gap can also be used as top absorber layers in multi-junction tandem solar cells. We examined the dynamical and thermal stability, electronic structure, and optical features of In2PtX 6 (X = Cl, Br, and I)...
-
Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy
PublikacjaEffects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy ( TaNb ) 0.67 ( HfZrTi ) 0.33 are studied in the pressure range 0–100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Grüneisen model and the Grüneisen...
-
Raman Scattering versus Strain Engineering in Phosphorene Nanostructures: An Ab Initio Studies
PublikacjaThe one-dimensional nanoribbons made from phosphorene are novel structures with great applicability potential in material science. The significant carrier mobility combined with intrinsic semiconductor properties makes them ideal for application in electronics, and they are excellent candidates for sensing material. The lack of a well–established multiscale modelling strategy for phosphorene nano optoelectronic devices is one of...
-
Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites
PublikacjaApplied cutting-edge electronic structure and phonon simulations provide a reliable knowledge about the stability of perovskite structures and their electronic properties, which are crucial for design of effective nanomaterials. Gold is one of the exceptional elements, which can exist both as a monovalent and a trivalent ion in the B site of a double perovskite such as A2BI BIIIX6. However, until now, electronic properties of Cs2AuI AuIIIX6...
-
Superconductivity in Ternary Mg4Pd7As6
PublikacjaThe synthesis and characterization of a new compound Mg4Pd7As6, which is found to be a superconductor with Tc = 5.45 K is reported. Powder X-ray diffraction confirms the U4Re7Si6 structure (space group Im-3m, no. 229) with the lattice parameter a = 8.2572(1) Å. Magnetization, specific heat, and electrical resistivity measurements indicate that it is a moderate-coupling ( = 0.72) type-II superconductor. The electronic and phonon...
-
MgPd2Sb : A Mg-based Heusler-type superconductor
PublikacjaWe report the synthesis and physical properties of a full Heusler compound, MgPd2Sb, which we found toshow superconductivity belowTc=2.2K. MgPd2Sb was obtained by a two-step solid-state reaction methodand its purity and cubic crystal structure [Fm-3m,a=6.4523(1) Å] were confirmed by powder x-ray diffrac-tion. Normal and superconducting states were studied by electrical resistivity, magnetic susceptibility, andheat...
-
Anisotropic, multiband, and strong-coupling superconductivity of the Pb0.64Bi0.36 alloy
PublikacjaThis paper presents theoretical and experimental studies on the superconductivity of Pb0.64Bi0.36 alloy, which is a prototype of strongly coupled superconductors and exhibits one of the strongest coupling under ambient pressure among the materials studied so far. The critical temperature, the specific heat in the superconducting state, and the magnetic critical fields are experimentally determined. Deviations from the single-gap...
-
Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO
PublikacjaX-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of...
-
Superconductivity in the niobium-rich compound Nb5Se4
PublikacjaThe niobium rich selenide compound Nb5Se4 was synthesized at ambient pressure by high-temperature solid–state reaction in a sealed Ta tube. Resistivity and heat capacity measurements reveal that this compound is superconducting, with a Tc = 1.85K. The electronic contribution to the specific heat γ and the Debye temperature are found to be 18.1 mJmol−1K−2 and 298 K respectively. The calculated electron-phonon coupling constant λep...
-
Anomalous decay of quantum correlations of quantum-dot qubits
PublikacjaWe study the evolution of quantum correlations, quantified by the geometric discord, of two excitonic quantum-dot qubits under the influence of the phonon environment. We show that the decay of these correlations differs substantially from the decay of entanglement. Instead of displaying sudden-death-type behavior, the geometric discord shows a tendency to undergo transitions between different types of decay, is sensitive to nonlocal...
-
Structure and thermoelectric properties of bismuth telluride—Carbon composites
PublikacjaCarbon nanotubes and amorphous carbon have been introduced into a bismuth telluride matrix (0.15 and 0.30 wt.% ratio) to investigate the influence of the carbon on the composite’s thermoelectric properties. Composites with well-dispersed additives have been obtained by sonication and ball-milling methodology. Carbon nanotubes and an amorphous carbon addition led to a decrease in electric conductivity from 1120 S/cm to 77 S/cm....
-
Evolution of Physical Properties of RE 3 Ni 5 Al 19 Family (RE = Y, Nd, Sm, Gd, Tb, Dy, Ho, and Er)
PublikacjaSingle crystals of RE3Ni5Al19 series (RE = Y, Nd, Sm, Gd, Tb, Dy, Ho, and Er) are grown using the Al self-flux method. The crystal structure is examined by both single crystal and powder X-ray diffraction. Physical properties are studied for the first time for RE3Ni5Al19 (RE = Y, Nd, Gd, Tb, Dy, Ho, and Er) by means of magnetic susceptibility, electrical resistivity, and heat capacity measurements. Complex magnetic behaviors, with...
-
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublikacjaThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
Synthesis and properties of HoT2Al20 (T = Ti, V, Cr) intermetallic cage compounds
PublikacjaPolycrystalline samples of HoT2Al20 (T = Ti, V, Cr) intermetallics were synthesized using a step-wise arc-melting technique. All three compounds adopt the CeCr2Al20-type crystal structure with Ho atoms positioned inside oversized icosahedral cages formed by Al atoms. The structure of HoV2Al20 compound is reported. The materials properties were studied by means of electrical resistivity, magnetic susceptibility, and specific heat...
-
Luminescent properties of Ln3+ doped tellurite glasses containing AlF3
PublikacjaThe low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence...
-
Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56
PublikacjaSingle crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations...
-
Concentration‐Induced Hetero‐Valent Partial‐Inverse Occupation of Infrared Phosphor
PublikacjaInfrared luminescent materials have evoked much attention from chemists and material scientists. Although substantial progress is made in materials design, the luminescent mechanism remains ambiguous in the complex structures, presenting major barriers to developing novel infrared luminescent materials. Herein, this study aims to deliberate a complete discussion on infrared phosphors with concentration-induced hetero-valent partial-inverse...
-
Polymer based thick films - material quality and interface resistance evaluation
PublikacjaThe properties of polymer based thick film layers mede using different resistive pastes and dipping silvers have been studied. The composite of carbon and graphite (C/Gr) conducting particles suspended in different polymer vehicles were used for preparation resistive layers. Interface resistance Rc created between dipping silver (DiAg) contact layer and resistive layer was determined from the surface potential distribution measurements...
-
Increasing the conductivity of V2O5-TeO2 glass by crystallization: structure and charge transfer studies
PublikacjaIn the present paper, V 2 O 5 -TeO 2 glass was prepared by the melt-quenching technique. Crystallization of glass with a vanadium content higher than 35%mol results in an increase in electrical conductivity by a few orders of magnitude and a decrease in activation energy from ~0.40 to ~0.12 eV. In this work, a critical review of existing charge transfer models was presented on the example of V 2 O 5 -TeO 2 glass and glass–ceramics....
-
Increasing the conductivity of V2O5 -TeO2 glass by crystallization: structure and charge transfer studies
PublikacjaIn the present paper, V2O5-TeO2 glass...