Filters
total: 9300
filtered: 8355
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: BIOMIMETIC SENSING MATERIALS
-
Computer-aided design and selective laser melting of porous biomimetic materials
Publication -
Computer-aided design and selective laser melting of porous biomimetic materials
Publication -
Perspectives of Fluctuation-Enhanced Gas Sensing by Two-Dimensional Materials
PublicationWe present the results of gas sensing using the fluctuation-enhanced sensing method in selected two-dimensional materials (2DMs). We claim that gas sensing selectivity can be improved further by considering semiconducting two-dimensional materials doped by noble metal nanoparticles. The 2DMs' structures exhibit some imperfections defined by their structure, occurring repeatedly there. These imperfections are adsorption-desorption...
-
Perspectives of Fluctuation-Enhanced Gas Sensing by Two-Dimensional Materials
PublicationWe present the results of gas sensing using the fluctuation-enhanced sensing method in selected two-dimensional materials (2DMs). We claim that gas sensing selectivity can be improved further by considering semiconducting two-dimensional materials doped by noble metal nanoparticles. The 2DMs' structures exhibit some imperfections defined by their structure, occurring repeatedly there. These imperfections are adsorption-desorption...
-
Novel approach to interference analysis of glucose sensing materials coated with Nafion
PublicationA gold-based sensing platform, TiND | AuNP | Nafion, was prepared as an exemplary electrode material exhibiting a response to glucose in a neutral solution. The change of electrochemical properties after exposure to glucose and interference compounds such as vitamin C, glycine, urea, paracetamol and acetylsalicylic acid was tested.
-
Novel approach to interference analysis of glucose sensing materials coated with Nafion
PublicationA gold-based sensing platform, TiND | AuNP | Nafion, was prepared as an exemplary electrode material exhibiting a response to glucose in a neutral solution. The change of electrochemical properties after exposure to glucose and interference compounds such as vitamin C, glycine, urea, paracetamol and acetylsalicylic acid was tested.
-
Iron(III)-selective materials based on a catechol-bearing amide for optical sensing
PublicationThe synthesis and ion-binding properties of a new amide L derived from 3,4-dihydroxybenzoic acid are described. Due to the presence of a catechol unit, the compound interacts selectively with iron(III) in organic solvent (dimethyl sulfoxide, DMSO) to produce a color change from pale yellow to green. The incorporation of the ligand L into polymeric matrices or its encapsulation into surfactant-based spheres enables analyte detection...
-
Iron(III)-selective materials based on a catechol-bearing amide for optical sensing
PublicationThe synthesis and ion-binding properties of a new amide L derived from 3,4-dihydroxybenzoic acid are described. Due to the presence of a catechol unit, the compound interacts selectively with iron(III) in organic solvent (dimethyl sulfoxide, DMSO) to produce a color change from pale yellow to green. The incorporation of the ligand L into polymeric matrices or its encapsulation into surfactant-based spheres enables analyte detection...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Highly sensitive microwave sensors based on open complementary square split-ring resonator for sensing liquid materials
PublicationThis paper presents high-sensitivity sensors based on open complementary square split-ring resonator and modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional...
-
Quantum dots in gas sensing a review
PublicationAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
Quantum dots in gas sensing a review
PublicationAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide
PublicationThere is an increasingly popular trend aimed at improvement of fundamental metrological parameters of sensors via implementation of materials mimicking biological olfactory systems. This study presents investigation on usefulness of the peptide mimicking HarmOBP7 region as a receptor element of the piezoelectric sensor for selective analysis of long-chain aldehydes. Identification of odorant binding proteins creates new possibilities...
-
Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide
PublicationThere is an increasingly popular trend aimed at improvement of fundamental metrological parameters of sensors via implementation of materials mimicking biological olfactory systems. This study presents investigation on usefulness of the peptide mimicking HarmOBP7 region as a receptor element of the piezoelectric sensor for selective analysis of long-chain aldehydes. Identification of odorant binding proteins creates new possibilities...
-
Biomimetic torene shells
PublicationThe genome inside the eukaryotic cells is guarded by a unique shell structure, called the nuclear envelope (NE), made of lipid membranes. This structure has an ultra torus topology with thousands of torus-shaped holes that imparts the structure a high flexural stiffness. Inspired from this biological design, here we present a novel ‘‘torene’’ architecture to design lightweight shell structures with ultra-stiffness for engineering...
-
Biomimetic torene shells
PublicationThe genome inside the eukaryotic cells is guarded by a unique shell structure, called the nuclear envelope (NE), made of lipid membranes. This structure has an ultra torus topology with thousands of torus-shaped holes that imparts the structure a high flexural stiffness. Inspired from this biological design, here we present a novel ‘‘torene’’ architecture to design lightweight shell structures with ultra-stiffness for engineering...
-
Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique
PublicationFluctuation-enhanced sensing (FES) is a very powerful odor and gas sensing technique and as such it can play a fundamental role in the control of environments and, therefore, in the protection of health. For this reason, we conduct a comprehensive survey on the state-of-the-art of the FES technique, highlighting potentials and limits. Particular attention is paid to the dedicated instrumentation necessary for the application of...
-
Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique
PublicationFluctuation-enhanced sensing (FES) is a very powerful odor and gas sensing technique and as such it can play a fundamental role in the control of environments and, therefore, in the protection of health. For this reason, we conduct a comprehensive survey on the state-of-the-art of the FES technique, highlighting potentials and limits. Particular attention is paid to the dedicated instrumentation necessary for the application of...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
PublicationWe discuss the implementation challenges of gas sensing systems based on low-frequency noise measurements on chemoresistive sensors. Resistance fluctuations in various gas sensing materials, in a frequency range typically up to a few kHz, can enhance gas sensing by considering its intensity and the slope of power spectral density. The issues of low-frequency noise measurements in resistive gas sensors, specifically in two-dimensional...
-
Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
PublicationWe discuss the implementation challenges of gas sensing systems based on low-frequency noise measurements on chemoresistive sensors. Resistance fluctuations in various gas sensing materials, in a frequency range typically up to a few kHz, can enhance gas sensing by considering its intensity and the slope of power spectral density. The issues of low-frequency noise measurements in resistive gas sensors, specifically in two-dimensional...
-
Graphene field-effect transistor application for flow sensing
PublicationMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...
-
Graphene field-effect transistor application for flow sensing
PublicationMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...
-
Fluctuation-Enhanced Sensing
PublicationFluctuation-enhanced sensing (FES) is an exciting and relatively new research field that promises to extend the range of information that can be extracted from a single sensor. In FES, the stochastic fluctuations of the sensor signal, rather than its average value, are recorded and analyzed. Typical components of such fluctuations are due to interactions at the microscopic level. Proper statistical analysis provides optimum sensory...
-
Fluctuation-Enhanced Sensing
PublicationFluctuation-enhanced sensing (FES) is an exciting and relatively new research field that promises to extend the range of information that can be extracted from a single sensor. In FES, the stochastic fluctuations of the sensor signal, rather than its average value, are recorded and analyzed. Typical components of such fluctuations are due to interactions at the microscopic level. Proper statistical analysis provides optimum sensory...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Remote Sensing in Vessel Detection and Navigation
PublicationThe Special Issue (SI) “Remote Sensing in Vessel Detection and Navigation” highlighted a variety of topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. The 15 papers (from 23 submitted) were published.
-
Remote Sensing in Vessel Detection and Navigation
PublicationThe Special Issue (SI) “Remote Sensing in Vessel Detection and Navigation” highlighted a variety of topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. The 15 papers (from 23 submitted) were published.
-
Recognition and sensing of anions
PublicationMolecular ion recognition is one of the most intensively studied areas of supramolecular technology. The reason for this is the essential role that ions play in many biological as well as industrial processes. On the other hand, however, it has been proved that ions can have a negative impact on human health and the environment. For these reasons, it is extremly important to develop rapid and simple methods allowing the determination...
-
Recognition and sensing of anions
PublicationMolecular ion recognition is one of the most intensively studied areas of supramolecular technology. The reason for this is the essential role that ions play in many biological as well as industrial processes. On the other hand, however, it has been proved that ions can have a negative impact on human health and the environment. For these reasons, it is extremly important to develop rapid and simple methods allowing the determination...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublicationObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublicationObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublicationIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublicationIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
Korzyści z zastosowania układów Load Sensing
PublicationW artykule porównano układy Load Sensing I i II rodzaju z układem z dwudrogowym regulatorem przepływu. Dokonano oceny mocy traconych oraz korzyści stosowania układów LS w stosunku do tradycyjnych rozwiązań
-
Korzyści z zastosowania układów Load Sensing
PublicationW artykule porównano układy Load Sensing I i II rodzaju z układem z dwudrogowym regulatorem przepływu. Dokonano oceny mocy traconych oraz korzyści stosowania układów LS w stosunku do tradycyjnych rozwiązań
-
Nitrogen dioxide sensing properties of PEDOT polymer films
PublicationThis work presents a simple and fully electrochemical route for the polymerization of poly(3,4-ethylenedioxytiophene) (PEDOT) films for fabricating a NO2 gas sensor prepared by electropolymerization of 3,4-Ethylenedioxythiophene (EDOT) monomer in lithium perchlorate/acetonitrile solution. The main aim of this study is to determine the sensing properties of conductive polymer at elevated temperatures. The effects of the humidity,...
-
Nitrogen dioxide sensing properties of PEDOT polymer films
PublicationThis work presents a simple and fully electrochemical route for the polymerization of poly(3,4-ethylenedioxytiophene) (PEDOT) films for fabricating a NO2 gas sensor prepared by electropolymerization of 3,4-Ethylenedioxythiophene (EDOT) monomer in lithium perchlorate/acetonitrile solution. The main aim of this study is to determine the sensing properties of conductive polymer at elevated temperatures. The effects of the humidity,...
-
Post-Pyrolytic Carbon as a Phase Change Materials (PCMs) Carrier for Application in Building Materials
PublicationThis article covers new application for char as a carrier of phase-change materials (PCM) that could be used as an additive to building materials. Being composed of bio-char and PCM, the granulate successfully competes with more expensive commercial materials of this type, such as Micronal® PCM. As a PCM carrier, char that was obtained from the pyrolysis of chestnut fruit (Aesculus hippocastanum) with different absorbances of the...
-
Post-Pyrolytic Carbon as a Phase Change Materials (PCMs) Carrier for Application in Building Materials
PublicationThis article covers new application for char as a carrier of phase-change materials (PCM) that could be used as an additive to building materials. Being composed of bio-char and PCM, the granulate successfully competes with more expensive commercial materials of this type, such as Micronal® PCM. As a PCM carrier, char that was obtained from the pyrolysis of chestnut fruit (Aesculus hippocastanum) with different absorbances of the...
-
Side Fins Performance in Biomimetic Unmanned Underwater Vehicle
Publication -
Side Fins Performance in Biomimetic Unmanned Underwater Vehicle
Publication -
Laser patterned platform with PEDOT–graphene composite film for NO2 sensing
PublicationThis work presents a simple and fully electrochemical route used for fabricating of a NO2 gas sensor made of reduced-graphene-oxide-poly(3,4-ethylenedioxythiophene) composite film. The sensing platform was fabricated from alumina substrate and equipped with gold interdigitated electrodes and built-in heater.The temperature distribution on the surface of interdigitated electrodes was investigated by a thermalimaging camera and compared...
-
Laser patterned platform with PEDOT–graphene composite film for NO2 sensing
PublicationThis work presents a simple and fully electrochemical route used for fabricating of a NO2 gas sensor made of reduced-graphene-oxide-poly(3,4-ethylenedioxythiophene) composite film. The sensing platform was fabricated from alumina substrate and equipped with gold interdigitated electrodes and built-in heater.The temperature distribution on the surface of interdigitated electrodes was investigated by a thermalimaging camera and compared...