Filters
total: 1059
filtered: 881
Search results for: INTELLIGENT SIGNAL PROCESSING, MACHINE LEARNING, DATASETS
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublicationNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublicationDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublicationThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
The chemistry, properties and performance of flame-retardant rubber composites: Collecting, analyzing, categorizing, machine learning modeling, and visualizing
PublicationRubbers combine the flexibility with mechanical strength, supporting myriad applications, but suffer from inherent flammability. Formulation and production of flame-retardant rubber composites (FRRCs) have intensively been practiced over years, but not comprehensively reviewed. This necessity has outlined collecting, analyzing, screening, classifying, and interpreting the literature with the aim of classifying the FRRCs. We quantified...
-
Combined method of multibeam sonar signal processing and image analysis for seafloor classification
PublicationThe combined approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive...
-
Seafloor characterisation using multibeam sonar echo signal processing and image analysis
PublicationThe authors propose the approach to multibeam seafloor characterisation which relies on the combined, concurrent use of two different techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the echoes received in the consecutive beams. Then, the parameters describing the local region of sonar image, namely, the local standard deviation of a grey level, and...
-
Measurements of Two-phase Flows in Pipelines Using Radioisotopes and Statistical Signal Processing
PublicationThis paper presents an application of radiotracers and gamma absorption method in two-phase flow measurements in pipelines. Two different methods were implemented to analysis of acquired signals. Investigated methods are based on the cross-correlation function and the phase of the cross-spectral density distribution. The examples presented in the article illustrate the application of the radioisotopes to evaluation of liquid-gas...
-
Efficient sampling of high-energy states by machine learning force fields
Publication -
Modular machine learning system for training object detection algorithms on a supercomputer
PublicationW pracy zaprezentowano architekturę systemu służącego do tworzenia algorytmów wykorzystujących metodę AdaBoost i służących do wykrywania obiektów (np. twarzy) na obrazach. System został podzielony na wyspecjalizowane moduły w celu umożliwienia łatwej rozbudowy i efektywnego zrównoleglenia implementacji przeznaczonej dla superkomputera. Na przykład, system może być rozszerzony o nowe cechy i algorytmy ich ekstrakcji bez konieczności...
-
Stacking and rotation-based technique for machine learning classification with data reduction
Publication -
POPULATION-BASED MULTI-AGENT APPROACH TO SOLVING MACHINE LEARNING PROBLEMS
Publication -
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublicationThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublicationCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
Impact of digital signal processing on FOC current feedback in high-speed PMSM drive
PublicationIn applications where size and weight of the electric motor are among major design concerns, Permanent Magnet Synchronous Motors (PMSMs) with wide operational speed-range are commonly preferred. Due to limited inverter switching frequency, high-speed operation of a drive results in a low ratio between the switching frequency and the fundamental frequency of motor voltage. Such operating conditions have been recently identified...
-
Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption
Publicationn this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...
-
Digital processing of pulse signal from light-to-frequency converter under dynamic condition
Publication -
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publication -
Machine Learning and data mining tools applied for databases of low number of records
Publication -
Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches
Publication -
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublicationTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Fully Tunable Analog Biquadratic Filter for Low-Power Auditory Signal Processing in CMOS Technologies
PublicationA novel Gm-C structure of a second-order continuous-time filter is proposed that allows for the independent control of the filter’s natural frequency (ω0) and quality factor (Q). The structure consists of two capacitors and four transconductors. Two transconductors together with the capacitors form a lossless second-order circuit with tunable ω0. The other two transconductors form a variable gain amplifier (VGA) which realizes...
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
Comparison of machine learning for sentiment analysis in detecting anxiety based on social media data
Publication -
Sentiment Analysis Using Machine Learning Approach Based on Feature Extraction for Anxiety Detection
Publication -
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Hybrid Processing: the Impact of Mechanical and Surface Thermal Treatment Integration onto the Machine Parts Quality
Publication -
MATCHED FILTER APPROACH FOR MICROSEISMIC SIGNAL PROCESSING OF REAL DATA FROM EAST POMERANIA SHALE GAS
PublicationThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing (HF)process. An array of several hundred geophones is placed on the surface to record little ground tremors induced by fracturing process. Filtration and summation of signals from geophones is essential to identify and locate fracturing events from underground. Authors propose a method of matched filtering, that is usually...
-
EVALUATION OF LIQUID-GAS FLOW IN PIPELINE USING GAMMA-RAY ABSORPTION TECHNIQUE AND ADVANCED SIGNAL PROCESSING
PublicationLiquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of thegamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble,...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publication -
Towards Achilles Tendon Injury Prevention in Athletes with Structural MRI Biomarkers: A Machine Learning Approach
Publication -
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
Publication -
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...