Filters
total: 1281
filtered: 936
-
Catalog
Chosen catalog filters
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublicationTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublicationHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Integrating Statistical and Machine‐Learning Approach for Meta‐Analysis of Bisphenol A‐Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival
PublicationBisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta‐analysis of such datasets is, however, very complicated for various...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Deep learning model for automated assessment of lexical stress of non-native english speakers
Publication -
Machine Learning for Control Systems Security of Industrial Robots: a Post-covid-19 Overview
Publication -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China
Publication -
Edu Inspiracje WZiE: Active Learning, czyli o mocy aktywnego przetwarzania informacji
Publication -
Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines
Publication -
Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
Publication -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
COMPARATIVE ANALYSIS OF COPING STRATEGIES WITH STRESS OF STUDENTS IN DIFFERENT LEARNING CONDITIONS DURING THE PANDEMIC
Publication -
Urban Food Self-Production in the Perspective of Social Learning Theory: Empowering Self-Sustainability
PublicationUrban food production is becoming an increasingly significant topic in the context of climate change and food security. Conducting research on this subject is becoming an essential element of urban development, deepening knowledge regarding the benefits, challenges, and potential for the development of urban agriculture as an alternative form of food production. Responding to this need, this monograph presents the results of...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publication -
Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection
Publication -
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
E-LEARNING NA POLITECHNICE GDAŃSKIEJ - HISTORIA ROZWOJU W LATACH 1995-2020
PublicationInternet oraz kształcenie oparte na wykorzystaniu e-technologii stały się nieodłącznym elementem edukacji. Artykuł przedstawia zarys historii rozwoju e-learningu na Politechnice Gdańskiej, przykładowe rozwiązania technologiczne, elementy tworzenia struktur organizacyjnych oraz związanych z legislacją, a także wybrane projekty wykorzystujące szeroko pojęte e-technologie w edukacji akademickiej realizowanej na Uczelni
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Open source learning management systems at civil engineering and environmental department: TeleCAD and Moodle.
PublicationW rozdziale zaprezentowano dwa systemy zarządzania kształceniem, służące do przygotowania i prowadzenia e-kursów. Pierwszy z nich TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). Ostanie użycie systemu miało miejsce w roku akademickim 2003/2004 i był on wykorzystany w projekcie CURE (V Program Ramowy, 2003-2006). W roku 2003 dzięki wsparciu projektu Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Social learning and knowledge flows in cluster initiatives, In: Sanz S.C., Blanco F.P., Urzelai B. (Eds). Human and Relational Resources (pp. 44-45). the 4th International Conference on Clusters and Industrial Districts CLUSTERING, University of Valencia, Spain, May 23–24 (ISBN: 978-84-09-11926-4).
PublicationPurpose – The purpose of the paper is to explore how learning manifests and knowledge flows in cluster initiatives (CIs) due to interactions undertaken by their members. The paper addresses the research question of how social learning occurs and knowledge flows in CIs. Design/methodology/approach – The qualitative study of four cluster initiatives helped to identify various symptoms of social learning and knowledge flows in...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
A ROLE PLAYING GAME NAME GENERATOR LEARNING ITS CREATIVITY FROM ARKADIA MUD PLAYERS
PublicationThe paper proposes an approach to creative generation of new names for the purposes of Role Playing Games in fantasy realms. The generator based on an existing database of na mes is able to propose a set of new names with regard to demanded attributes, such as: length of the name, sex and race of the character, a given p hrase as the origin for the generated name as well as subjective evaluations from former users. The software...
-
Diversity of Students’ Unethical Behaviors in Online Learning Amid COVID-19 Pandemic: An Exploratory Analysis
Publication -
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publication -
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publication -
Guest editorial: learning, scheduling, resource optimization, and evolution in smart artificial systems: challenges and support
Publication...
-
Errorless Learning as a method of neuropsychological rehabilitation of individuals suffering from dementia in the course of Alzheimer’s disease
Publication -
Fractional-Order PID Controller (FOPID)-Based Iterative Learning Control for a Nonlinear Boiler System
Publication -
SELECTING A REPRESENTATIVE DATA SET OF THE REQUIRED SIZE USING THE AGENT-BASED POPULATION LEARNING ALGORITHM
Publication -
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublicationShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
Implementing SP4CE Learning Rooms concept and AUTODESK online certification in the preparation of a new generation of engineers.
PublicationIn academia, educators do not always cope with rapidly changing technologies. Yet keeping up with new trends is essential to graduates’ success in a competitive job market. In the article, the author will answer the question of how Autodesk University Open Educational Resources and Certiport exams including GMetrix can enhance students’ academic progress and prepare them for future career. The concept of co-operation between Authorized...
-
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publication -
Early Predictors of Learning a Foreign Language in Pre-school – Polish as a First Language, English as a Foreign Language
Publication -
Universal Predictors of Dental Students’ Attitudes towards COVID-19 Vaccination: Machine Learning-Based Approach
Publication -
Experimental investigations and prediction of WEDMed surface of nitinol SMA using SinGAN and DenseNet deep learning model
Publication -
Quantitative Soil Characterization for Biochar–Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization
Publication