Search results for: quantum key distribution - Bridge of Knowledge

Search

Search results for: quantum key distribution

Filters

total: 2953
filtered: 2642

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: quantum key distribution

  • A new quantum-inspired approach to reduce the blocking probability of demands in resource-constrained path computation scenarios

    This article presents a new approach related with end-to-end routing, which, owing to quantum-inspired mecha-nisms of prediction of availability of network resources, results in improved blocking probability of incoming requests to establish transmission paths. The proposed scheme has been analyzed for three network topologies and several scenarios of network load. Obtained results show a significant (even twofold) reduction of...

    Full text to download in external service

  • Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation

    Publication

    - JOURNAL OF HAZARDOUS MATERIALS - Year 2020

    Despite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0±1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on...

    Full text to download in external service

  • A dipole-driven path for electron and positron attachments to gas-phase uracil and pyrimidine molecules: a quantum scattering analysis

    Publication
    • F. Carelli
    • F. Gianturco
    • J. Franz
    • M. Satta

    - EUROPEAN PHYSICAL JOURNAL D - Year 2015

    Electron and positron scattering processes in the gas-phase are analysed for uracil and pyrimidine molecules using a multichannel quantum approach at energies close to threshold. The special effects on the scattering dynamics induced by the large dipole moments in both molecules on the spatial features of the continuum leptonic wavefunctions are here linked to the possible bound states of the Rydberg-like molecular anions or ‘positroned’...

    Full text to download in external service

  • Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots

    Publication
    • J. Sowik
    • M. Miodyńska
    • B. Bajorowicz
    • A. Mikolajczyk
    • W. Lisowski
    • T. Klimczuk
    • D. Kaczor
    • A. Zaleska-Medynska
    • A. Malankowska

    - APPLIED SURFACE SCIENCE - Year 2019

    A series of novel ZnO quantum dots modified with rare earth metals was successfully prepared by a simple sol-gel approach. The effects of types (Eu, Er, Tb, Yb, Ho, La) and amounts (from 0.09 to 0.45 mmol) of lanthanides on the optical properties, structural characterization and photocatalytic activity of ZnO/RE QDs were systematically investigated. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform...

    Full text to download in external service

  • The Quantum Efficiency Roll-Off Effect in Near-Infrared Organic Electroluminescent Devices with Iridium Complexes Emitters

    Publication

    - Materials - Year 2020

    The electroluminescence quantum efficiency roll-off in iridium(III)-based complexes, namely Ir(iqbt)2(dpm) and Ir(iqbt)3(iqbt=1 (benzo[b]thiophen-2-yl)-isoquinolinate, dpm=2,2,6,6-tetramethyl-3,5-heptanedionate) utilized as near-infrared emitters in organic light emitting diodes with remarkable external quantum efficiencies, up to circa 3%, 1.5% and 1%, are measured and analyzed. With a 5–6 weight % of emitters embedded...

    Full text available to download

  • Quantum mechanical which-way experiment with an internal degree of freedom

    Publication

    - Nature Communications - Year 2013

    For a particle travelling through an interferometer, the trade-off between the available which-way information and the interference visibility provides a lucid manifestation of the quantum mechanical wave-particle duality. Here we analyse this relation for a particle possessing an internal degree of freedom such as spin. We quantify the trade-off with a general inequality that paints an unexpectedly intricate picture of wave-particle...

    Full text available to download

  • The Ellenbogen’s “Matter as Software” Concept for Quantum Computer Implementation: IV. The X@C60 Molecular Building Blocks (MBBs) and Computing System Lifetime Estimation

    Publication

    - Quantum Matter - Year 2016

    The problem of approximate lifetimes of individual X@C60 MBBs and tip-based nanofabricated quantum computing device systems is discussed under the conservative assumption of single-point failure. A single chemical transformation of the C60 cage into high-energy opened o-C60 isomer which forms the communication canal for the low energy transfer of an X atom from X@C60 MBB to the outside environment was studied. According to the...

    Full text to download in external service

  • Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity

    Publication
    • M. Paszkiewicz-Gawron
    • K. Ewa
    • M. Endo-Kimura
    • J. Zwara
    • A. Pancielejko
    • K. Wang
    • W. Lisowski
    • J. Łuczak
    • A. Zaleska-Medynska
    • E. Grabowska-Musiał

    - APPLIED SURFACE SCIENCE - Year 2021

    Most efforts in heterogeneous photocatalysis are focused on development of new and stable photoactive materials efficient in degradation of various pollutants under visible-light irradiation. In this regard, the wide-bandgap perovskite semiconductors, i.e., SrTiO3 (titanate), SrSnO3 (stannate) and AgTaO3 (tantalate), were prepared by a solvothermal method, and then modified with carbon quantum dots (CQDs) or graphene quantum dots...

    Full text available to download

  • Site-selective magnetic order of neptunium inNp2Ni17

    Publication
    • A. Hen
    • N. Magnani
    • J. Griveau
    • R. Eloirdi
    • E. Colineau
    • J. Sanchez
    • I. Halevy
    • A. Kozub
    • A. Shick
    • I. Orion
    • R. Caciuffo

    - PHYSICAL REVIEW B - Year 2015

    We present the results obtained by superconducting quantum interference device (SQUID) magnetometry, specific heat, and Mossbauer spectroscopy measurements carried out on Np2Ni17 polycrystalline samples. We show that long-range magnetic order, with a moment mu((2b)) similar to 2.25 mu(B), occurs below T-N = 17.5 K on the Np (2b) sites. A nontrivial situation is observed in that the other Np sites (2d) do not take part to the order...

    Full text available to download

  • Sensitivity of entanglement decay of quantum-dot spin qubits to the external magnetic field

    Publication

    - PHYSICAL REVIEW A - Year 2014

    We study the decay of entanglement of quantum-dot electron-spin qubits under hyperfine-interaction-mediated decoherence.We show that two-qubit entanglement of a single entangled initial state may exhibit decay characteristic of two disentanglement regimes in a single sample, when the externalmagnetic field is changed. The transition is manifested by the suppression of time-dependent entanglement oscillations which are superimposed...

    Full text available to download

  • At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited

    Publication

    - Physical Review X - Year 2018

    We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N−1 (Heisenberg scaling) in terms of the number...

    Full text available to download

  • Formation of carbon monoxide by radiative association: a quantum dynamical study

    Publication

    - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY - Year 2011

    Rate coefficients for the formation of carbon monoxide (CO) by radiative association of carbon and oxygen atoms are computed using quantum dynamical simulations. At temperatures above 10 K CO radiative association is dominated by C(3P) and O(3P) approaching on the A1Π potential energy curve. The rate coefficient is estimated as k=A(T/300 K)αexp−β/T with A= 1.39 × 10−18 cm3 s−1, α=−0.016 and β= 92.2 for temperatures between 6 and...

    Full text to download in external service

  • Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory

    Publication
    • J. Dziedzic
    • A. Bhandari
    • L. Anton
    • C. Peng
    • J. Womack
    • M. Famili
    • D. Kramer
    • C. Skylaris

    - Journal of Physical Chemistry C - Year 2020

    We present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...

    Full text available to download

  • Method for universal detection of two-photon polarization entanglement

    Publication
    • K. Bartkiewicz
    • P. Horodecki
    • K. Lemr
    • A. Miranowicz
    • K. Życzkowski

    - PHYSICAL REVIEW A - Year 2015

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal...

    Full text available to download

  • Objectivity in the non-Markovian spin-boson model

    Publication

    - PHYSICAL REVIEW A - Year 2017

    Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum theory. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the so-called spectrum broadcast structures. These are multipartite quantum states of the system...

    Full text available to download

  • Numerical modeling of quantum dynamical processes

    Publication

    - Year 2023

    In this dissertation I present a high-precision (15, 18 or 33 decimal places) C++ implementation of quantum dynamics time propagation algorithms for both time-independent and time-dependent Hamiltonian with an inhomogeneous source term. Moreover I present an extension of both algorithms for time propagation to handle arbitrary number of coupled electronic levels. I have performed a careful validation of these implementations comparing...

    Full text available to download

  • Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment

    Publication
    • A. Ribar
    • S. Huber
    • M. Śmiałek-Telega
    • K. Tanzer
    • M. Neustetter
    • R. Schürmann
    • I. Bald
    • S. Denifl

    - PHYSICAL CHEMISTRY CHEMICAL PHYSICS - Year 2018

    2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylenediaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed...

    Full text to download in external service

  • Monitoring of the Process of System Information Broadcasting in Time

    One of the problems of quantum physics is how a measurement turns quantum, noncopyable data, towards copyable classical knowledge. We use the quantum state discrimination in a central system model to show how its evolution leads to the broadcasting of the information, and how orthogonalization and decoherence factors allow us to monitor the distance of the state in question to the one perfectly broadcasting information, in any...

    Full text to download in external service

  • Swapping Space for Time: An Alternative to Time-Domain Interferometry

    Publication

    Young's double-slit experiment [1] requires two waves produced simultaneously at two different points in space. In quantum mechanics the waves correspond to a single quantum object, even as complex as a big molecule. An interference is present as long as one cannot tell for sure which slit is chosen by the object. The more we know about the path, the worse the interference. In the paper we show that quantum mechanics allows for...

    Full text available to download

  • Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20

    Publication
    • K. Kolincio
    • O. Pérez
    • E. Canadell
    • P. Alemany
    • E. Duverger-Nédellec
    • A. Minelli
    • A. Bosak
    • A. Pautrat

    - PHYSICAL REVIEW B - Year 2020

    We report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported,...

    Full text available to download

  • Hidden Tensor Structures

    Publication

    - ENTROPY - Year 2024

    Any single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration...

    Full text available to download

  • Characterizing the Performance of <span class="sc">xor</span> Games and the Shannon Capacity of Graphs

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2014

    In this Letter we give a set of necessary and sufficient conditions such that quantum players of a two-party xor game cannot perform any better than classical players. With any such game, we associate a graph and examine its zero-error communication capacity. This allows us to specify a broad new class of graphs for which the Shannon capacity can be calculated. The conditions also enable the parametrization of new families of games...

    Full text to download in external service

  • Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods

    Publication

    - Year 2019

    The understanding and interpretation of experimental resonance Raman (RR) spectra can strongly benefit from theoretical simulations. These can be achieved by combining quantum chemistry (QC) methods to calculate the electronic and vibrational molecular properties, together with appropriate models and approximations to compute the Raman intensities. This chapter presents the main and most commonly employed approaches to calculate...

  • Relativity of arithmetic as a fundamental symmetry of physics

    Arithmetic operations can be defined in various ways, even if one assumes commutativity and associativity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in...

    Full text available to download

  • Konzetrationslöschung durch Energieübertragung bei der Lumineszenz von Lösungen

    Publication
    • C. Bojarski
    • J. Kuśba
    • G. Obermüller

    - Year 1971

    The absorption spectra and quantum yields of the fluorescence of rhodamine 6 G are investigated in two different water-glycerol mixtures as a function of the rhodamine concentration. The observed concentration quenching is attributed to the formation of rhodamine dimers and the decrease in quantum yield is compared with theoretical concepts about concentration quenching by energy transfer to the dimers.

    Full text to download in external service

  • Vibrational Quenching of Optically Pumped Carbon Dimer Anions

    Publication
    • M. Nötzold
    • R. Wild
    • C. Lochmann
    • T. Rahim
    • S. P. Melath
    • K. Dulitz
    • B. P. Mant
    • J. Franz
    • F. A. Gianturco
    • R. Wester

    - PHYSICAL REVIEW LETTERS - Year 2023

    Careful control of quantum states is a gateway to research in many areas of science such as quantum information, quantum-controlled chemistry, and astrophysical processes. Precise optical control of molecular ions remains a challenge due to the scarcity of suitable level schemes, and direct laser cooling has not yet been achieved for either positive or negative molecular ions. Using a cryogenic wire trap, we show how the internal...

    Full text available to download

  • Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks

    Publication

    Rendezvous is an old problem of assuring that two or more parties, initially separated, not knowing the position of each other, and not allowed to communicate, are striving to meet without pre-agreement on the meeting point. This problem has been extensively studied in classical computer science and has vivid importance to modern and future applications. Quantum non-locality, like Bell inequality violation, has shown that in many...

    Full text available to download

  • Bound on Bell inequalities by fraction of determinism and reverse triangle inequality

    Publication
    • P. Joshi
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • R. Horodecki
    • B. Li
    • S. Szarek
    • T. Szarek

    - PHYSICAL REVIEW A - Year 2015

    It is an established fact that entanglement is a resource. Sharing an entangled state leads to nonlocal correlations and to violations of Bell inequalities. Such nonlocal correlations illustrate the advantage of quantum resources over classical resources. In this paper, we quantitatively study Bell inequalities with 2 × n inputs. As found in Gisin et al. [Int. J. Quantum. Inform. 05, 525 (2007)], quantum mechanical correlations...

    Full text available to download

  • Bell-Type Inequalities from the Perspective of Non-Newtonian Calculus

    Publication

    A class of quantum probabilities is reformulated in terms of non-Newtonian calculus and projective arithmetic. The model generalizes spin-1/2 singlet state probabilities discussed in Czachor (Acta Physica Polonica:139 70–83, 2021) to arbitrary spins s. For s → ∞ the formalism reduces to ordinary arithmetic and calculus. Accordingly, the limit “non-Newtonian to Newtonian” becomes analogous to the classical limit of a quantum theory

    Full text available to download

  • Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance

    Publication
    • M. Miodynska
    • A. Mikolajczyk
    • B. Bajorowicz
    • J. Zwara
    • T. Klimczuk
    • W. Lisowski
    • G. Trykowski
    • H. P. Pinto
    • A. Zaleska-Medynska

    - APPLIED CATALYSIS B-ENVIRONMENTAL - Year 2020

    The formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at...

    Full text available to download

  • Towards Resource Theory of Coherence in Distributed Scenarios

    Publication

    - Physical Review X - Year 2017

    The search for a simple description of fundamental physical processes is an important part of quantum theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations these parties can perform. This class of operations is widely known as local operations and classical communication....

    Full text available to download

  • On thermal stability of topological qubit in Kitaev's 4D model

    Publication

    - OPEN SYSTEMS & INFORMATION DYNAMICS - Year 2010

    We analyse stability of the four-dimensional Kitaev model-a candidate for scalable quantum memory - in finite temperature within the weak coupling Markovian limit. It is shown that, below a critical temperature, certain topological qubit observables X and Z possess relaxation times exponentially long in the size of the system. Their construction involves polynomial in system size algorithm which uses as an input the results of...

  • Collective Uncertainty Entanglement Test

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2011

    For a given pure state of a composite quantum system we analyze the product of its projections onto aset of locally orthogonal separable pure states. We derive a bound for this product analogous to theentropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled statesand it allows us to construct a family of entanglement measures, we shall call collectibility. As thesequantities are experimentally...

    Full text to download in external service

  • General solution of quantum mechanical equations of motion with time-dependent Hamiltonians: A Lie algebraic approach

    Publication

    - REPORTS ON MATHEMATICAL PHYSICS - Year 2010

    The unitary operators U(t), describing the quantum time evolution of systems with a time-dependent Hamiltonian, can be constructed in an explicit manner using the method of time-dependent invariants. We clarify the role of Lie-algebraic techniques in this context and elaborate the theory for SU(2) and SU(1,1). In these cases we give explicit formulae for obtaining general solutions from special ones. We show that the constructions...

    Full text to download in external service

  • Refined theoretical study of radiative association: Cross sections and rate constants for the formation of SiN

    Publication
    • M. Gustafsson
    • S. Antipov
    • J. Franz
    • G. Nyman

    - JOURNAL OF CHEMICAL PHYSICS - Year 2012

    Radiative association of silicon mononitride (SiN) in its two lowest molecular electronic states is studied through quantum and classical dynamics. Special attention is paid to the behavior of the cross section at high collision energies. A modified expression for the semiclassical cross section is presented which excludes transitions to continuum states. This gives improved agreement with quantum mechanical perturbation theory...

    Full text available to download

  • Teleportation of geometric structures in 3D

    The simplest quantum teleportation algorithms can be represented in geometric terms in spaces of dimensions 3 (for real state vectors) and 4 (for complex state vectors). The geometric representation is based on geometric-algebra coding, a geometric alternative to the tensor-product coding typical of quantum mechanics. We discuss all the elementary ingredients of the geometric version of the algorithm: geometric analogs of states...

    Full text available to download

  • Linear game non-contextuality and Bell inequalities—a graph-theoretic approach

    Publication

    - NEW JOURNAL OF PHYSICS - Year 2016

    We study the classical and quantum values of a class of one-and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR(XOR-d) games we study are a subclass of the well-known linear games. We introduce a 'constraint graph' associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the...

    Full text available to download

  • Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots

    Publication

    - Journal of Physical Chemistry C - Year 2017

    A heterojunction with excellent visible light response and stability based on titanium dioxide nanotubes (TiO2 NTs), bismuth sulfide quantum dots (Bi2S3 QDs), and platinum nanoparticles (Pt NPs) is proposed. Both Pt NPs (3.0 ± 0.2 nm) and Bi2S3 QDs (3.50 ± 0.20 nm) are well distributed on the (i) top parts, (ii) inner walls, and (iii) outer walls of the TiO2 NTs. Visible-light-induced photoreaction was initialized by excitation...

    Full text to download in external service

  • Band Gap Engineering toward Semimetallic Character of Quinone-Rich Polydopamine

    Publication

    Semiconductor|melanin interfaces have received increasingly more attention in the fields of photocatalysis and applied electrochemistry because of their facile synthesis, unique electrical properties, and strong capability toward photosensitization. In this work, we describe the electropolymerization of quinone-rich polydopamine (PDA) on the surface of hydrogenated TiO2 nanotubes with enhanced photoactivity in the visible spectrum....

    Full text available to download

  • Robust amplification of Santha-Vazirani sources with three devices

    Publication

    - PHYSICAL REVIEW A - Year 2015

    We demonstrate that amplification of arbitrarily weak randomness is possible using quantum resources. We present a randomness amplification protocol that involves Bell experiments. We find a Bell inequality which can amplify arbitrarily weak randomness and give a detailed analysis of the protocol involving it. Our analysis includes finding a sufficient violation of Bell inequality as a function of the initial quality of randomness....

    Full text available to download

  • Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications

    Publication
    • M. Sobiech
    • P. Luliński
    • P. P. Wieczorek
    • M. Marć

    - TRAC-TRENDS IN ANALYTICAL CHEMISTRY - Year 2021

    Samples with complex matrix analyzed during explanation of pathogenesis of various diseases and food or environmental monitoring request advanced analytical and instrumental devices. Among the materials used for described purposes, quantum (QDs) or carbon dots (CDs) layered by molecularly imprinted polymer (MIP) shells have gained widespread attention. Unique optical and physicochemical properties of QDs/CDs together with high...

    Full text to download in external service

  • Beyond the helium buffer: 12C−2 rotational cooling in cold traps with H2 as a partner gas: interaction forces and quantum dynamics

    Publication
    • B. P. Mant
    • J. Franz
    • R. Wester
    • F. A. Gianturco

    - MOLECULAR PHYSICS - Year 2021

    abstract = { The scattering cross-sections and corresponding rate coefficients for rotationally inelastic collisions of $^{12}$C$_2$^-$ ($^2 \Sigma_g^+$) with H$_2$ ($^1 \Sigma_g^+$) are presented over a broad range of cold-trap temperatures. They have been calculated using quantum scattering theory that employs a new ab initio potential energy surface. The rate coefficients for the inelastic processes in the anionic partner are...

    Full text available to download

  • pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy

    Publication

    - Pharmaceutics - Year 2023

    Selective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the...

    Full text available to download

  • PHOTON LUMINESCENCE STUDIES OF TETRAHYDROFURAN FOLLOWING TRIHYDROGEN CATIONS IMPACT IN THE 20–1000 EV ENERGY RANGE

    Publication

    Photon emission arising during tetrahydrofuran (C4H8O, THF) fragmentation initiated by H3 + ion impact has been studied experimentally. Luminescence fragmentation spectra and the relative emission cross-sections of the excited fragments have been measured using collision-induced emission spectroscopy in the 20–1000 eV energy range. The main features in the spectra are the H Balmer series lines, whose intensities decrease with increasing...

    Full text available to download

  • Sudden death of effective entanglement

    Publication

    - PHYSICAL REVIEW A - Year 2010

    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when...

    Full text available to download

  • A Comprehensive Experimental and Theoretical Study on the[{(η5-C5H5)2Zr[P(µ-PNEt2)2P(NEt2)2P]}2O Crystalline System

    Publication

    - MOLECULES - Year 2021

    The structure of tetraphosphetane zirconium complex C52H100N8OP10Zr21 was determined by single crystal X-ray diffraction analysis. The crystal belongs to the monoclinic system, space group P21/c, with a = 19.6452(14), b = 17.8701(12), c = 20.7963(14)Å, α = γ = 90°, β = 112.953(7)°, V = 6722.7(8)Å3, Z = 4. The electronic structure of the organometallic complex has been characterized within the framework of Quantum Chemical Topology....

    Full text available to download

  • Reexamination of the decoherence of spin registers

    Publication

    - PHYSICAL REVIEW A - Year 2019

    We revisit the decoherence process of a multiqubit register interacting with a thermal bosonic bath. We generalize the previous studies by considering not only the register’s behavior but also a part of its environment. In particular, we are interested in information flow from the register to the environment, which we describe using recently introduced multipartite quantum state structures called spectrum broadcast structures....

    Full text available to download

  • Dirac fermions and possible weak antilocalization in LaCuSb2

    Publication
    • J. Chamorro
    • A. Topp
    • Y. Fang
    • M. J. Winiarski
    • C. R. Ast
    • M. Krivenkov
    • A. Varykhalov
    • B. J. Ramshaw
    • L. Schoop
    • T. McQueen

    - APL Materials - Year 2019

    Layered heavy-metal square-lattice compounds have recently emerged as potential Dirac fermion materials due to bonding within those sublattices. We report quantum transport and spectroscopic data on the layered Sb square-lattice material LaCuSb2. Linearly dispersing band crossings, necessary to generate Dirac fermions, are experimentally observed in the electronic band structure observed using angle-resolved photoemission spectroscopy,...

    Full text available to download

  • TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field

    Publication
    • J. Dziedzic
    • Y. Mao
    • Y. Shao
    • J. Ponder
    • T. Head-Gordon
    • M. Head-Gordon
    • C. Skylaris

    - JOURNAL OF CHEMICAL PHYSICS - Year 2016

    We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression...

    Full text available to download

  • Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6

    Publication
    • P. Parnicka
    • A. Mikolajczyk
    • H. P. Pinto
    • W. Lisowski
    • T. Klimczuk
    • G. Trykowski
    • B. Bajorowicz
    • A. Zaleska-Medynska

    - APPLIED SURFACE SCIENCE - Year 2020

    Bismuth tungstate (Bi2WO6) can work as a photocatalyst but suffers from rapid recombination of photogenerated charge carriers. Herein, density functional theory (DFT) simulations revealed that the formation of a thermodynamically stable AgInS2(112)/Bi2WO6(010) heterojunction could promote charge separation and enhance the photoactivity of Bi2WO6. To confirm these theoretical predictions, a new type of photocatalysts in the form...

    Full text to download in external service