Search results for: MICROWAVE ENGINEERING
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublicationDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
A Goal-Oriented Error Estimator for Reduced Basis Method Modeling of Microwave Devices
PublicationThis letter proposes a novel a-posteriori error estimator suitable for the reduced order modeling of microwave circuits. Unlike the existing error estimators based on impedance function residuals, the new one exploits the residual error associated with the computation of the scattering matrix. The estimator can be effectively used in the Reduced Basis Method (RBM) to automatically generate reduced-order models. The results of numerical...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Haemocompatibility Of Non-Functionalized And Plasmachemical Functionalized Detonation Nanodiamond Particles
PublicationThe purpose of this paper is to present the innovative design of microwave plasma system for modification of detonation nanodiamond particles (DNP) using a special rotating drum placed inside the reactor. Nanodiamond particles manufactured by detonation method reveal the biological activity depending on surface functionalization. Plasmachemical modification of detonation nanodiamond particles gives the possibility of controlling...
-
Novel MNZ-type microwave sensor for testing magnetodielectric materials
PublicationA novel microwave sensor with the mu-near-zero (MNZ) property is proposed for testing magnetodielectric material at 4.5 GHz. The sensor has a double-layer design consisting of a microstrip line and a metal strip with vias on layers 1 and 2, respectively. The proposed sensor can detect a unit change in relative permittivity and relative permeability with a difference in the operating frequency of 45 MHz and 78 MHz, respectively....
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
A Trisection Filter Design With Negative Slope of Frequency-Dependent Crosscoupling Implemented in Substrate Integrated Waveguide (SIW)
PublicationThis letter reports on a novel realization of a microwave bandpass filter in a triplet configuration with a frequency-dependent crosscoupling implemented in substrate integrated waveguide (SIW). The design involves implementing dispersive coupling with a negative slope, a feature that allows the capabilities of the classic triplet topology to be extended. In this particular case, the implementation of two transmission zeros on...
-
DETERMINATION OF SURFACTANTS IN ENVIRONMENTAL SAMPLES. PART II. ANIONIC COMPOUNDS
PublicationSurfactants (SAA) with negative charge of polar group are named as anionic compounds. They are main constituent of most products containing synthetic surfactants. The linear alkylbenzene sulfonates (LAS), alkyl ethoxysulfates (AES) and alkyl sulfates (AS) are typically applied from this class of compounds. Those surfactants are ingredients of household detergents and cleaners, laundry detergents, cosmetic. Moreover they can be...
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublicationA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublicationPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
On the low-cost design of abbreviated multisection planar matching transformer
PublicationA numerically demanding wideband matching transformer composed of three nonuniform transmission lines (NUTLs) has been designed and optimized at a low computational cost. The computational feasibility of the design has been acquired through the exploitation of low-fidelity NUTL models in most steps of the design procedure and an implicit space mapping optimization engine, providing high accuracy results with only a handful of EM...
-
Microwave-assisted synthesis of zinc derivatives of potato starch
PublicationZincatated potato starch was prepared in a solid-state, microwave-assisted reaction using generated in situ sodium tetrahydroxozincate [Na2Zn(OH)4]. For comparison, zincatation of starch was also carriedout on convectional heating. Depending on the irradiation conditions, the products of either mono- or crosslinking esterification were formed. Higher power applied at shorter exposition offered products ofmonoesterification, and...
-
A Model-Order Reduction Approach for Electromagnetic Problems With Nonaffine Frequency Dependence
PublicationThe aim of this paper is to present a novel model-order reduction (MOR) technique for the efcient frequency-domain nite-element method (FEM) simulation of microwave components. It is based on the standard reduced-basis method, but the subsequent expansion frequency points are selected following the so-called sparsied greedy strategy. This feature makes it especially useful to perform a fast-frequency sweep of problems that lead...
-
Evaluation of the potential of Microwave Plasma–Atomic Emission Spectrometry for trace elements leaching assessment from the concrete matrix with sewage sludge ash additives
PublicationThe management of ash generated during the thermal utilization of sewage sludge is a significant environmental problem requiring an effective technological solution. One alternative way to dispose of sewage sludge is to bind it in concrete as a substitute for part of the aggregate. The properties of the C-S-H phase enable effective immobilization of harmful substances that sewage sludge contains. The amount of individual compounds...
-
A robust design of a numerically demanding compact rat-race coupler
PublicationA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
Rapid multi-objective simulation-driven design of compact microwave circuits
PublicationA methodology for rapid multi-objective design of compact microwave circuits is proposed. Our approach exploits point-by-point Pareto set identification using surrogate-based optimization techniques, auxiliary equivalent circuit models, and space mapping as the major model correction method. The proposed technique is illustrated and validated through the design of a compact rat-race coupler. A set of ten designs being trade-offs...
-
Substrate-integrated waveguide (SIW) filter design using space mapping
PublicationIn this paper, we present a fast technique for an automated design of microwave filters in substrate integrated wave (SIW) technology. The proposed methodology combines the space mapping technique with a cost function defined using the location of complex zeros and poles of filter’s transfer and reflection function and uses a rectangular waveguide as a surrogate model. The effectiveness of the proposed technique is presented with...
-
Rapid design optimization of compact couplers using response features and adjoint sensitivities
PublicationA technique for rapid EM-driven design optimization of compact microwave couplers is presented. Our approach exploits response features and adjoint sensitivities and allows for low-cost design closure both in terms of performance enhancement and structure miniaturization. It is demonstrated using a compact rat-race coupler working at 1 GHz and compared to adjoint-based gradient optimization.
-
Efficient Complex Root Finding Algorithm for Microwave and Optical Propagation Problems
PublicationArticle relates to the use of innovative root finding algorithm (on a complex plane) to study propagation properties of microwave and optical waveguides. Problems of this type occur not only in the analysis of lossy structures, but also in the study of complex and leaky modes (radiation phenomena). The proposed algorithm is simple to implement and can be applied for functions with singularities and branch cuts in the complex plane...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublicationIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...
-
Near-Field Wireless Sensing of Plastics and Papers Using Frugal Peel-Off Passive Tag
PublicationThis article presents a novel frugal approach of testing plastics and papers using a near-field microwave sensing technique with a peel-off tag. The proposed sensing technique involves two electrical entities: the sensor, which may be regarded as a reader, and a disposable tag. The reader is a modified design of a gap-coupled microstrip line (GCML) sensor, while the passive tag is a standard double-ring complementary split-ring...
-
Automated microwave planar filter design with generalized Chebyshev characteristics.
PublicationIn this paper a technique of automatization of design of microwave filters with generalized Chebyshev characteristics is presented. A full wave electromagnetic simulator linked with the Matlab computing environment is used to ensure a rigorous numerical analysis while at the same time allowing automatization. To decrease time of optimization and overall design process, the Cauchy interpolation technique was used. An automated design...
-
Study of the Effectiveness of Model Order Reduction Algorithms in the Finite Element Method Analysis of Multi-port Microwave Structures
PublicationThe purpose of this paper is to investigate the effectiveness of model order reduction algorithms in finite element method analysis of multi-port microwave structures. Consideration is given to state of the art algorithms, i.e. compact reduced-basis method (CRBM), second-order Arnoldi method for passive-order reduction (SAPOR), reduced-basis methods (RBM) and subspace-splitting moment-matching MOR (SSMM-MOR)
-
Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement
PublicationA variety of surrogate modelling techniques has been utilized in high-frequency design over the last two decades. Yet, the curse of dimensionality still poses a serious challenge in setting up re-liable design-ready surrogates of modern microwave components. The difficulty of the model-ing task is only aggravated by nonlinearity of circuit responses. Consequently, constructing a practically usable surrogate model, valid across...
-
A Substrate Integrated Waveguide (SIW) Bandpass Filter in A Box Configuration With Frequency-Dependent Coupling
PublicationThis letter presents the design of a microwave bandpass filter with frequency-dependent coupling implemented in substrate integrated waveguide (SIW) technology. The proposed filter implements a four-pole generalized Chebyshev filtering function with two transmission zeros. Resonators are arranged in an extended box configuration with dispersive coupling on a main signal path, which produces an extra zero in comparison to classical...
-
Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film
PublicationWe report the novel modification of a hydrogen-terminated polycrystalline boron-doped electrode with a microwave pulsed-plasma polymerized allylamine. Boron-doped diamond (BDD) was coated with a very thin layer of adherent cross-linked, pinhole- and additive-free allylamine plasma polymer (PPAAm) resistant to hydrolysis and delamination and characterized by a high density of positively charged amino groups. The pulsed microwave...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
PublicationThe present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefed in crude glycerol and 1,4-butanediol at diferent temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identifcation of the obtained polyols were...
-
Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction
PublicationA comprehensive comparison of a wide collection of compact microstrip resonant cells (CMRCs) found in the extensive body of literature has been presented. The evaluation of different CMRC designs has led to the selection of the most promising CMRC geometry for the efficient miniaturisation of modern microwave components. In order to showcase the vital effectiveness of the approach, the initially selected CMRC has been notably...
-
Protective and Suppressing Electromagnetic Interference Properties of Epoxy Coatings Containing Nano-Sized NiZn Ferrites
PublicationNano-crystalline ferrites with the chemical formula NixZn(1−x)Fe2O4, where x = 0, 0.2, 0.4, 0.6, 0.8, 1.0, were synthesized using a co-precipitation method. The obtained ferrites were investigated by X-ray diffraction (XRD). The corrosion inhibiting behavior of nano-sized ferrites was tested using carbon steel samples and 10% aqueous ferrite extracts. Results were compared with previous data obtained for micro-sized ceramic ferrites....
-
Fast Full-Wave Multilevel Zero-Pole Optimization of Microwave Filters
PublicationA new concept is proposed for the full-wave computer-aided design of microwave filters. The method consists of two stages and operates on the zeros and poles of the transfer function and their derivatives. These quantities are evaluated from the response computed by a full-wave electromagnetic solver with two levels of accuracy. The two stages make use of different models that are optimized using a low-accuracy electromagnetic...
-
A Multifunctional Microwave Filter/Sensor Component Using a Split Ring Resonator Loaded Transmission Line
PublicationThis research is focused on the design and realiza2 tion of a microwave component with multifunctional filter/sensor 3 operation using a resonator-loaded transmission line (TL). It is 4 shown that while the structure acts as a bandstop filter, the 5 phase of the reflection coefficient from the loading resonator(s) 6 on a movable layer can be used for displacement sensing, thus 7 allowing for combining filtering with sensing in...
-
Residue-Pole Methods for Variability Analysis of S-parameters of Microwave Devices with 3D FEM and Mesh Deformation
PublicationThis paper presents a new approach for variability analysis of microwave devices with a high dimension of uncertain parameters. The proposed technique is based on modeling an approximation of system by its poles and residues using several modeling methods, including ordinary kriging, Adaptive Polynomial Chaos (APCE), and Support Vector Machine Regression (SVM). The computational cost is compared with the traditional Monte-Carlo...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Rapid Yield Estimation and Optimization of Microwave Structures Exploiting Feature-Based Statistical Analysis
PublicationIn this paper, we propose a simple, yet reliable methodology to expediteyield estimation and optimization of microwave structures. In our approach,the analysis of the entire response of the structure at hand (e.g., $S$-parameters asa function of frequency) is replaced by response surface modeling of suitablyselected feature points. On the one hand, this is sufficient to determinewhether a design satisfies given performance specifications....
-
A Linear Phase Filter in Quadruplet Topology With Frequency-Dependent Couplings
PublicationThis letter presents a design of a linear phase microwave bandpass filter. The filter is composed of four resonators arranged in the quadruplet topology. Making the cross and one direct coupling dispersive gives additional design flexibility. The first advantage of using frequency-dependent couplings is the possibility to chose an arbitrary location of a pair of complex transmission zeros (TZs) in the s-domain. The second one is...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Designing a high-sensitivity dual-band nano-biosensor based on petahertz MTMs to provide a perfect absorber for early-stage non-melanoma skin cancer diagnostic
PublicationThe purpose of this study is development of a novel high-performance low-Petahertz (PHz) biosensor for non-melanoma skin cancer (NMSC) diagnosis. The presented device is designed to work within a microwave imaging regime, which is a promising alternative to conventional diagnostic methods such as visual examination, dermoscopy, and biopsy. The suggested biosensor incorporates a dual-band perfect absorber (operating bands at 0.909...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublicationManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Variable-fidelity response feature surrogates for accelerated statistical analysis and yield estimation of compact microwave components
PublicationAccounting for manufacturing tolerances is an essential part of a reliable microwave design process. Yet, quantification of geometry and/or material parameter uncertainties is challenging at the level of full-wave electromagnetic (EM) simulation models. This is due to inherently high cost of EM analysis and massive simulations necessary to conduct the statistical analysis. Here, a low-cost and accurate yield estimation procedure...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Low-Cost Surrogate Modeling of Miniaturized Microwave Components Using Nested Kriging
PublicationIn the paper, a recently reported nested kriging methodology is employed for modeling of miniaturized microwave components. The approach is based on identifying the parameter space region that contains high-quality designs, and, subsequently, rendering the surrogate in this subset. The results obtained for a miniaturized unequal-power-split rat-race coupler and a compact three-section impedance transformer demonstrate reliability...
-
Factors causing degradation of sulfadimetoxine
PublicationSulfadimetoxine is a representative of sulfonamide drugs which presence inhibits growth of activated sludge bacteria, rhat is necessary for the effective mineralization of organic and inorganic contaminants. Therefore factors which con prevent this situation are searched. Aim of this study is selection of conditions causing efficien degradation of the drug- sulfadimetoxine. The impact of such aspects as : the type of oxidizing...