Search results for: NEURAL NETWORK
-
Neural networks based NARX models in nonlinear adaptive control
Publication -
Estimation the rhythmic salience of sound with association rules and neural networks
PublicationW referacie przedstawiono eksperymenty mające na celu automatyczne wyszukiwanie wartości rytmicznych we frazie muzycznej. W tym celu wykorzystano metody data mining i sztuczne sieci neuronowe.
-
Application of neural networks for description of pressure distribution in slide bearing.
PublicationBadano rozkład ciśnienia hydrodynamicznego w łożysku ślizgowym dla wybranych wariantów łożyska. Wykazano, że zastosowanie sieci neuronowych umożliwia opis rozkładu ciśnienia hydrodynamicznego z uwzględnieniem zmian geometrycznych (bezwymiarowa długość - L) i mechanicznych (mimośrodowość względem H) łożyska.
-
Identification of slide bearing main parameters using neural networks.
PublicationWykazano, że sieci neuronowe jak najbardziej nadają się do identyfikacji głównych parametrów geometrycznych i ruchowych hydrodynamicznych łożysk ślizgowych.
-
Using neural networks to examine trending keywords in Inventory Control
Publication -
Comparative study of neural networks used in modeling and control of dynamic systems
PublicationIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublicationHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublicationPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublicationThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublicationThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublicationArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublicationBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublicationA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublicationPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublicationHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublicationAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
Publication -
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publication -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publication -
Automatic singing voice recognition employing neural networks and rough sets
PublicationCelem prac opisanych w referacie jest automatyczne rozpoznawanie głosów śpiewaczych. Do tego celu utworzona została baza nagrań próbek śpiewu profesjonalnego i amatorskiego. Próbki poddane zostały parametryzacji parametrami zaproponowanymi przez autorów ściśle do tego celu. Sposób wyznaczenia parametrów i ich interpretacja fizyczna przedstawione są w referacie. Parametry wprowadzane są do systemów decyzyjnych, klasyfikatorów opartych...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publication -
Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons
Publication -
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Estimation of musical sound separation algorithm effectiveness employing neural networks.
PublicationŚlepa separacja dźwięków sygnałów muzycznych zawartych w zmiksowanym materiale jest trudnym zadaniem. Jest to spowodowane tym, że dźwięki znajdujące się w relacjach harmonicznych mogą zawierać kolidujące składowe sinusoidalne (składowe harmoniczne). Ewaluacja wyników separacji jest również problematyczna, gdyż analiza błędu energetycznego często nie odzwierciedla subiektywnej jakości odseparowanych sygnałów. W tej publikacji zostały...
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublicationNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Musical phrase representation and recognition by means of neural networks and rough sets.
PublicationW artykule przedstawiono podstawowe definicje dotyczące frazy muzycznej. W eksperymentach posłużono się zapisem parametrycznym. W celu wzmocnienia procesu rozpoznawania wykorzystano kodowanie entropijne muzyki. W eksperymentach klasyfikacji oparto się o sztuczne sieci neuronowe i metodę zbiorów przybliżonych. Słowa kluczowe: fraza muzyczna, klasyfikacja, sztuczne sieci neuronowe, metoda zbiorów przybliżonych
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Comparison of effectiveness of musical sound separation algorithms employing neural networks.
PublicationNiniejszy referat przedstawia kilka algorytmów służących do separacji dźwięków instrumentów muzycznych. Zaproponowane podejście do dekompozycji miksów dźwiękowych opiera się na założeniu, że wysokość dźwięków w miksie jest znana, tzn. wejściem dla algorytmów jest przebieg zmian wysokości dźwięków składowych miksu. Proces estymacji fazy i amplitudy składowych harmonicznych wykorzystuje dopasowywanie zespolonych przebiegów harmonicznych...
-
Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices
Publication -
Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks
Publication -
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublicationForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublicationThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublicationIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublicationThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublicationTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Towards bees detection on images: study of different color models for neural networks
PublicationThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublicationNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublicationTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublicationA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publication -
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publication -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publication -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publication -
Aerodynamic excitations generated in turbine shroud clearance determined bymeans of neural networks
PublicationSiły aerodynamiczne generowane w uszczelnieniach turbinowych z reguły opisywane są modelem liniowym. Przy dużych drganiach wirnika sposób ten daje niezbyt dokładne wyniki. Zaproponowano wykorzystanie sieci neuronowych do określania sił ciśnieniowych powstających w uszczelnieniu. Wyniki porównano z badaniami eksperymentalnymi.