Filters
total: 1648
displaying 1000 best results Help
Search results for: OPTIMIZATION OF PREDICTIVE AERATION
-
PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, LQR, and MPC Control
PublicationProgrammable logic controllers (PLCs) are usually equipped with only basic direct control algorithms like proportional-integral-derivative (PID). Modules included in engineering software running on a personal computer (PC) are usually used to tune controllers. In this article, an alternative approach is considered, i.e. the development of a stochastic optimizer based on the (μ,λ) evolution strategy (ES) in a PLC. For this purpose,...
-
Frequency-Based Regularization for Improved Reliability Optimization of Antenna Structures
PublicationThe paper proposes a modified formulation of antenna parameter tuning problem. The main ingredient of the presented approach is a frequency-based regularization. It allows for smoothening the functional landscape of the assumed cost function, defined to encode the prescribed design specifications. The regularization is implemented as a special penalty term complementing the primary objective and enforcing the alignment of the antenna...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Retrosynthesis from transforms to predictive sustainable chemistry and nanotechnology: a brief tutorial review
Publication -
Rapid design optimization of compact couplers using response features and adjoint sensitivities
PublicationA technique for rapid EM-driven design optimization of compact microwave couplers is presented. Our approach exploits response features and adjoint sensitivities and allows for low-cost design closure both in terms of performance enhancement and structure miniaturization. It is demonstrated using a compact rat-race coupler working at 1 GHz and compared to adjoint-based gradient optimization.
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
A hybrid approach to optimization of radial inflow turbine with principal component analysis
PublicationEnergy conversion efficiency is one of the most important features of power systems as it greatly influences the economic balance. The efficiency can be increased in many ways. One of them is to optimize individual components of the power plant. In most Organic Rankine Cycle (ORC) systems the power is created in the turbine and these systems can benefit from effective turbine optimization. The paper presents the use of two kinds...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Optimization of liquid chromatographic separation of pharmaceuticals within green analytical chemistry framework
PublicationThe contribution is aimed at the development of methodology that allows to consider green analytical chemistry criteria during optimization of liquid chromatographic separation with design of experiment. The objectives of the optimization are maximization of peak areas of five non-steroid anti-inflammatory drugs, maximization of resolution between peaks, with simultaneous shortening of chromatographic separation time and minimization...
-
Optimization issues in distributed computing systems design
PublicationIn recent years, we observe a growing interest focused on distributed computing systems. Both industry and academia require increasing computational power to process and analyze large amount of data, including significant areas like analysis of medical data, earthquake, or weather forecast. Since distributed computing systems – similar to computer networks – are vulnerable to failures, survivability mechanisms are indispensable...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Optimization of using recuperative braking energy on a double-track railway line
PublicationIn the introduction, possible ways of reusing energy from recuperation are presented. Next, the paper investigates the possibility of using regenerative braking in the range allowed by the detailed timetable by adopting the method of transferring the recovered electric energy directly to the catenary and immediate use of this energy by another train at the same power section. In the main part of the work, it is shown, that the...
-
Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction
PublicationShip routing process taking into account weather conditions is a constrained multi-objective optimization problem and it should consider various optimization criteria and constraints. Formulation of a stability-related, dynamic route optimization constraint is presented in this paper. One of the key objectives of a cross ocean sailing is finding a compromise between ship safety and economics of operation. This compromise should...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublicationDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
A framework for accelerated optimization of antennas using design database and initial parameter set estimation
PublicationThe purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated. Design/methodology/approach The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities....
-
Geometry optimization of steroid sulfatase inhibitors - the influence on the free binding energy with STS
PublicationIn the paper we review the application of two techniques (molecular mechanics and quantum mechanics) to study the influence of geometry optimization of the steroid sulfatase inhibitors on the values of descriptors coded their chemical structure and their free binding energy with the STS protein. We selected 22 STS-inhibitors and compared their structures optimized with MM+, PM7 and DFT B3LYP/6–31++G* approaches considering separately...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
Voltage and Reactive Power Load Flow Optimization in the Power System Using Fuzzy Logic
PublicationThe paper presents issues related to voltage control in the power system. An original method of reactive power flow optimization is considered, which leads to improved voltages in the power system and reduced active power losses. The optimization method is based on a procedure that employs fuzzy logic and is supported by a gradient search algorithm. The method has been implemented in PLANS software and verified.
-
Rotational Design Space Reduction for Cost-Efficient Multi-Objective Antenna Optimization
PublicationCost-efficient multi-objective design of antenna structures is presented. Our approach is based on design space reduction algorithm using auxiliary single-objective optimization runs and coordinate system rotation. The initial set of Pareto-optimal solutions is obtained by optimizing a response surface approximation model established in the reduced space using coarse-discretization EM simulation data. The optimization engine is...
-
Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems
PublicationThis paper introduces approximate analytic quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO) procedures. We present a summary of extensive research into computing. In the performed comparative study we take into account the various approaches of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces; where some executive criteria,...
-
Multi-objective optimization for assessment of topological modification in UWB antennas
PublicationThis paper addresses an issue of systematic and rigorous assessment of effects of topological modifications on the performance of compact UWB antennas. Application of fast surrogate-assisted multi-objective optimization procedures allows us for obtaining, in a practically acceptable timeframe, a set of designs representing the best possible trade-offs between conflicting objectives (here, antenna size minimization and reduction...
-
Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems
PublicationThis paper introduces approximate analytic quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO) procedures. We present a summary of extensive research into computing. In the performed comparative study we take into account the various approaches of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces; where some executive criteria,...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublicationElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Low-Cost EM-Simulation-Driven Multi-Objective Optimization of Antennas
PublicationA surrogate-based method for efficient multi-objective antenna optimization is presented. Our technique exploits response surface approximation (RSA) model constructed from sampled low-fidelity antenna model (here, obtained through coarse-discretization EM simulation). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. A low-cost RSA model construction is possible through...
-
A High-Efficient Measurement System With Optimization Feature for Prototype CMOS Image Sensors
PublicationIn this paper, a gray-scale CMOS image sensor (CIS) characterization system with an optimization feature has been proposed. By using a very fast and precise control of light intensity, based on the pulsewidth-modulation method, it is avoided to measure the illuminance every time. These features accelerate the multicriteria CIS optimization requiring many thousands of measurements. The system throughput is 2.5 Gb/s, which allows...
-
Approximate Criteria for the Evaluation of Truly Multi-Dimensional Optimization Problems
PublicationIn this paper we propose new improved approximate quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO). In the performed comparative study we take into account the various EMO algorithms of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces. It is well known that useful executive criteria, such as those based on the true Pareto...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublicationAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Multi-objective optimization of microwave couplers using corrected domain patching
PublicationPractical design of microwave components and circuits is a compromise between various, often conflicting objectives. In case of compact structures, the trade-offs are typically concerned with the circuit size and its electrical performance. Comprehensive information about the best possible trade-offs can be obtained by means of multi-objective optimization. In this paper, we propose a computationally efficient technique for identifying...
-
Multiobjective Aerodynamic Optimization by Variable-Fidelity Models and Response Surface Surrogates
PublicationA computationally efficient procedure for multiobjective design optimization with variable-fidelity models and response surface surrogates is presented. The proposed approach uses the multiobjective evolutionary algorithm that works with a fast surrogate model, obtained with kriging interpolation of the low-fidelity model data enhanced by space-mapping correction exploiting a few high-fidelity training points. The initial Pareto...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublicationElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Genetic Programming with Negative Selection for Volunteer Computing System Optimization
PublicationVolunteer computing systems like BOINC or Comcute are strongly supported by a great number of volunteers who contribute resources of their computers via the Web. So, the high efficiency of such grid system is required, and that is why we have formulated a multi-criterion optimization problem for a volunteer grid system design. In that dilemma, both the cost of the host system and workload of a bottleneck host are minimized. On...
-
Respiration rate estimation for model predictive control of dissolved oxygen in wastewater treatment plant
PublicationRespiration rate is very important parameter for biological processes in wastewater treatment plant (WWTP). The sequential algorithm for estimate the respiration rate is proposed and investigated. The Kalman filter (KF) is used. Simulation tests for the benchmark WWTP are presented.Respiracja jest bardzo ważnym parametrem dla prawidłowego przebiegu procesów biologicznych w oczyszczalni ścieków. W artykule przedstawiono i zbadano...
-
Hierarchical model predictive control of integrated quality and quantity in drinking water distribution systems
PublicationW artykule zaproponowane zostało zintegrowane podejście do sterowania ilością i jakością w systemach zaopatrzenia i dystrybucji wody. Sterowanie zintegrowane polega na optymalizowaniu kosztów operacyjnych zaspokajając zapotrzebowanie na wodę o wymaganej jakości i spełniając ograniczenia systemu. To zagadnienie sterowania optymalizującego jest zagadnieniem złożonym z powodu nieliniowości, dużego wymiaru, ograniczeń na wyjście, występowania...
-
Simple stable discrete-time generalised predictive control with anticipated filtration of control error
PublicationPraca dotyczy uogólnionego sterowania predykcyjnego w czasie dyskretnym z antypacyjną filtracją błędu sterowania. Pokazano, iż przy spełnieniu pewnych warunków rozwiązanie problemu syntezy optymlanego regulatora predykcyjnego zawsze istnieje oraz prowadzi do stabilnego zamkniętego układu sterowania o określonych własnościach dynamicznych. W pracy rozważano także problem syntezy regulatora predykcyjnego dla modeli sterowania obiektów...
-
Experimental study and comparison with predictive methods for flow boiling heat transfer coefficient of HFE7000
PublicationThis article describes an experimental study of flow boiling of HFE7000 inside a smooth vertical channel. The investigation has been carried out in a circular stainless-steel tube with an inner diameter of 2.3 mm. The data have been collected for the applied heat fluxes q ranging from 61 to 205 kW/m2, the mass flux G ranging from 214 to 1006 kg/(m2 s), the saturation temperature Tsat ranging from 30 to 54 °C and the full range...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublicationThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublicationIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...