Search results for: computational optimization
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublicationContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
On Computationally-Efficient Reference Design Acquisition for Reduced-Cost Constrained Modeling and Re-Design of Compact Microwave Passives
PublicationFull-wave electromagnetic (EM) analysis has been playing a major role in the design of microwave components for the last few decades. In particular, EM tools allow for accurate evaluation of electrical performance of miniaturized structures where strong cross-coupling effects cannot be adequately quantified using equivalent network models. However, EM-based design procedures (parametric optimization, statistical analysis) generate...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublicationApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Review of Selected Methods for Prediction of Added Resistance in Following Waves
PublicationThe added resistance in waves is a mean value of non-linear, second order reaction of a ship to incoming waves. In the beginning of the 20th century, the experimental methods for investigation of ship hydrodynamics at model scale were developed. They allowed the evaluation of added resistance by measurements in irregular waves (directly) or by measurements in regular waves (in-direct method). The main goal was to find more precise...
-
Cost-Efficient Behavioral Modeling of Antennas by Means of Global Sensitivity Analysis and Dimensionality Reduction
PublicationComputational tools, particularly electromagnetic (EM) solvers, are now commonplace in antenna design. While ensuring reliability, EM simulations are time-consuming, leading to high costs associated with EM-driven procedures like parametric optimization or statistical design. Various techniques have been developed to address this issue, with surrogate modeling methods garnering particular attention due to their potential advantages....
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Rapid and Reliable Re-Design of Miniaturized Microwave Passives by Means of Concurrent Parameter Scaling and Intermittent Local Tuning
PublicationRe-design of microwave passive components for the assumed operating frequencies or substrate parameters is an important yet a tedious process. It requires simultaneous tuning of relevant circuit variables, often over broad ranges thereof, to ensure satisfactory performance of the system. If the operating conditions at the available design are distant from the intended ones, local optimization is typically insufficient, whereas...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublicationThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Deformation mitigation and twisting moment control in space frames
PublicationOver the last five decades, space frames have centered on the modernization of touristic zones in view of architectural attractions. Although attempts to control joint movement and minimize axial force and bending moment in such structures were made sufficiently, twisting moments in space frames have been underestimated so far. In space frames, external load or restoring the misshapen shape may cause twisting in members. We herein...
-
Impact of thermal backfill parameters on current-carrying capacity of power cables installed in the ground
PublicationProper design of power installations with the participation of power cables buried in homogeneous and thermally well-conductive ground does not constitute a major problem. The situation changes when the ground is non-homogeneous and thermally low-conductive. In such a situation, a thermal backfill near the cables is commonly used. The optimization of thermal backfill parameters to achieve the highest possible current-carrying capacity...
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublicationDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
Performance Assessment of Using Docker for Selected MPI Applications in a Parallel Environment Based on Commodity Hardware
PublicationIn the paper, we perform detailed performance analysis of three parallel MPI applications run in a parallel environment based on commodity hardware, using Docker and bare-metal configurations. The testbed applications are representative of the most typical parallel processing paradigms: master–slave, geometric Single Program Multiple Data (SPMD) as well as divide-and-conquer and feature characteristic computational and communication...
-
KernelHive: a new workflow-based framework for multilevel high performance computing using clusters and workstations with CPUs and GPUs
PublicationThe paper presents a new open-source framework called KernelHive for multilevel parallelization of computations among various clusters, cluster nodes, and finally, among both CPUs and GPUs for a particular application. An application is modeled as an acyclic directed graph with a possibility to run nodes in parallel and automatic expansion of nodes (called node unrolling) depending on the number of computation units available....
-
Applying response surface method to optimize the performance of a divergent-chimney solar power plant
PublicationOne of the effective tools to generate electricity from solar energy is Divergent-chimney solar power plant (DSPP). Divergent and cylindrical chimneys of solar power plants have different performances considering turbine pressure drop ratio (ft). For the first time, the divergent angle (DA) and solar radiation (SR) interaction effects on 〖ft〗_opt are discussed through applying the Computational Fluid Dynamics (CFD) and Response...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Multiscalar Control Based Airgap Flux Optimization of Induction Motor for Loss Minimization
PublicationBased on the induction motor model, considering the core loss resistance that accounts for magnetic characteristic saturation, a speed control approach is devised with an adaptive full-order (AFO) speed observer. The induction motor model analysis is done sincerely in a stationary reference frame. The control approach incorporates a flux reference generator designed to meet optimal operational circumstances and a nonlinear speed...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Optimization of parallel implementation of UNRES package for coarse‐grained simulations to treat large proteins
PublicationWe report major algorithmic improvements of the UNRES package for physics-based coarse-grained simulations of proteins. These include (i) introduction of interaction lists to optimize computations, (ii) transforming the inertia matrix to a pentadiagonal form to reduce computing and memory requirements, (iii) removing explicit angles and dihedral angles from energy expressions and recoding the most time-consuming energy/force terms...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublicationAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
SIAM Conference on Optimization
Conferences -
Optimization: Techniques And Applications
Conferences -
The Use of the Language of Mathematics as an Inspiration for Contemporary Architectural Design
PublicationThe purpose of the article is to present the evolution of the use of mathematical language as an inspiration for creating spatial, three-dimensional forms in art and architecture. The article focuses on the possibilities for art and architectural design ideas gained by contemporary mathematics, algorithms and computational parametric approach. The analysis of various examples represents the relationships between the composition...
-
Accelerated multi-objective design of miniaturized microwave components by means of nested kriging surrogates
PublicationDesign of microwave components is an inherently multiobjective task. Often, the objectives are at least partially conflicting and the designer has to work out a suitable compromise. In practice, generating the best possible trade‐off designs requires multiobjective optimization, which is a computationally demanding task. If the structure of interest is evaluated through full‐wave electromagnetic (EM) analysis, the employment of...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences
PublicationDesign of Butler matrices dedicated to Internet of Things and 5th generation (5G) mobile systems—where small size and high performance are of primary concern—is a challenging task that often exceeds capabilities of conventional techniques. Lack of appropriate, unified design approaches is a serious bottleneck for the development of Butler structures for contemporary applications. In this work, a low-cost bottom-up procedure for...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Characterization of Defects Inside the Cable Dielectric With Partial Discharge Modeling
PublicationThe continuous monitoring of power system devices is an important step toward keeping such capital assets safe. Partial discharge (PD)-based measurement tools provide a reliable and accurate condition assessment of power system insulations. It is very common that voids or cavities exist in every solid dielectric insulation medium. In this article, different voids are modeled and analyzed using an advanced finite element (FE)-based...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Surrogate modeling of impedance matching transformers by means of variable‐fidelity electromagnetic simulations and nested cokriging
PublicationAccurate performance evaluation of microwave components can be carried out using full‐wave electromagnetic (EM) simulation tools, routinely employed for circuit verification but also in the design process itself. Unfortunately, the computational cost of EM‐driven design may be high. This is especially pertinent to tasks entailing considerable number of simulations (eg, parametric optimization, statistical analysis). A possible...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Selection of circuit geometry for miniaturized microwave components based on concurrent optimization of performance and layout area
PublicationThe paper presents a framework for automated EM-driven circuit geometry selection of miniaturized microwave components. Selection of a particular layout is based directly on miniaturization rates achieved for a set of candidate circuit geometries. Size reduction of the considered structures is obtained by replacing their main building blocks (i.e., conventional transmission lines) with slow-wave composite cells and meander lines....
-
Optimization of the spindle speed during milling of large-sized structures with the use of technique of Experiment-Aided Virtual Prototyping
PublicationIn the paper are presented considerations concerning vibration suppression problems during milling of large-sized workpieces with the use of innovative method of matching the spindle speed of cutting tool. It depends on repeatable change of the spindle speed value as soon as the optimal vibration state of the workpiece approaches. The values of dominant “peaks” in the frequency spectra and the Root Mean Square (RMS) values of time...
-
European Chapter on Combinatorial Optimization
Conferences -
SIGOPT - International Conference on Optimization
Conferences -
International Workshop on Global Optimization
Conferences -
Modelling and Optimization: Theory and Applications
Conferences -
International Network Optimization Conference
Conferences -
Conference on Combinatorial Optimization and Applications
Conferences -
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Solvent influence on the crystal structures of new cadmium tri-tert -butoxysilanethiolate complexes with 1,4-bis(3-aminopropyl)piperazine: luminescence and antifungal activity
PublicationMonocrystals of dinuclear 1,4-bis(3-aminopropyl)piperazine-�4N1,N10:N4,N40-bis[bis(tri-tert-butoxysilanethiolato-�S)cadmium(II)], [Cd2(C12H27O3SSi)4(C10-H24N4)] or [Cd2{SSi(OtBu)3}4(�-BAPP)], 1, and polynuclear catena-poly[[bis- (tri-tert-butoxysilanethiolato-�S)cadmium(II)]-�-1,4-bis(3-aminopropyl)piperazine-�2N10:N40], [Cd(C12H27O3SSi)2(C10H24N4)]n or [Cd{SSi(OtBu)3}2(�-BAPP)]n, 2, with 1,4-bis(3-aminopropyl)piperazine (BAPP)...
-
Solvent influence on the crystal structures of new cadmium tri-tert -butoxysilanethiolate complexes with 1,4-bis(3-aminopropyl)piperazine: luminescence and antifungal activity
PublicationMonocrystals of dinuclear -1,4-bis(3-aminopropyl)piperazine-4N1,N10:N4,N40-bis[bis(tri-tert-butoxysilanethiolato-S)cadmium(II)], [Cd2(C12H27O3SSi)4(C10-H24N4)] or [Cd2{SSi(OtBu)3}4(-BAPP)], 1, and polynuclear catena-poly[[bis-(tri-tert-butoxysilanethiolato-S)cadmium(II)]--1,4-bis(3-aminopropyl)piperazine-2N10:N40], [Cd(C12H27O3SSi)2(C10H24N4)]n or [Cd{SSi(OtBu)3}2(-BAPP)]n,2, with 1,4-bis(3-aminopropyl)piperazine (BAPP)...